%% $OpenXM: OpenXM/doc/ascm2001/openxm-servers.tex,v 1.1 2001/03/07 09:04:16 takayama Exp $ \section{ 1077 functions are available on our servers and libraries} This is a list of examples and functions which our servers provide. For details, see manuals of each system. \noindent \fbox{\large {Operations on Integers}} \noindent {idiv},{irem} (division with remainder), {ishift} (bit shifting), {iand},{ior},{ixor} (logical operations), {igcd},(GCD by various methods such as Euclid's algorithm and the accelerated GCD algorithm), {fac} (factorial), {inv} (inverse modulo an integer), {random} (random number generator by the Mersenne twister algorithm). \medbreak \noindent \fbox{\large {Ground Fields}} \noindent Arithmetics on various fields: the rationals, ${\bf Q}(\alpha_1,\alpha_2,\ldots,\alpha_n)$ ($\alpha_i$ is algebraic over ${\bf Q}(\alpha_1,\ldots,\alpha_{i-1})$), $GF(p)$ ($p$ is a prime of arbitrary size), $GF(2^n)$. \medbreak \noindent \fbox{\large {Operations on Polynomials}} \noindent {sdiv }, {srem } (division with remainder), {ptozp } (removal of the integer content), {diff } (differentiation), {gcd } (GCD over the rationals), {res } (resultant), {subst } (substitution), {umul} (fast multiplication of dense univariate polynomials by a hybrid method with Karatsuba and FFT+Chinese remainder), {urembymul\_precomp} (fast dense univariate polynomial division with remainder by the fast multiplication and the precomputed inverse of a divisor), \noindent \fbox{\large {Polynomial Factorization}} {fctr } (factorization over the rationals), {fctr\_ff } (univariate factorization over finite fields), {af } (univariate factorization over algebraic number fields), {sp} (splitting field computation). \medbreak \noindent \fbox{\large {Groebner basis}} \noindent {dp\_gr\_main } (Groebner basis computation of a polynomial ideal over the rationals by the trace lifting), {dp\_gr\_mod\_main } (Groebner basis over small finite fields), {tolex } (Modular change of ordering for a zero-dimensional ideal), {tolex\_gsl } (Modular rational univariate representation for a zero-dimensional ideal), {dp\_f4\_main } ($F_4$ over the rationals), {dp\_f4\_mod\_main } ($F_4$ over small finite fields). \medbreak \noindent \fbox{\large {Ideal Decomposition}} \noindent {primedec} (Prime decomposition of the radical), {primadec} (Primary decomposition of ideals by Shimoyama/Yokoyama algorithm). \medbreak \noindent \fbox{\large {Quantifier Elimination}} \noindent {qe} (real quantifier elimination in a linear and quadratic first-order formula), {simpl} (heuristic simplification of a first-order formula). %%$ {\scriptsize \begin{verbatim} [0] MTP2 = ex([x11,x12,x13,x21,x22,x23,x31,x32,x33], x11+x12+x13 @== a1 @&& x21+x22+x23 @== a2 @&& x31+x32+x33 @== a3 @&& x11+x21+x31 @== b1 @&& x12+x22+x32 @== b2 @&& x13+x23+x33 @== b3 @&& 0 @<= x11 @&& 0 @<= x12 @&& 0 @<= x13 @&& 0 @<= x21 @&& 0 @<= x22 @&& 0 @<= x23 @&& 0 @<= x31 @&& 0 @<= x32 @&& 0 @<= x33)$ [1] TSOL= a1+a2+a3@=b1+b2+b3 @&& a1@>=0 @&& a2@>=0 @&& a3@>=0 @&& b1@>=0 @&& b2@>=0 @&& b3@>=0$ [2] QE_MTP2 = qe(MTP2)$ [3] qe(all([a1,a2,a3,b1,b2,b3],QE_MTP2 @equiv TSOL)); @true \end{verbatim}} \medbreak \noindent \fbox{\large {Visualization of curves}} \noindent {plot} (plotting of a univariate function), {ifplot} (plotting zeros of a bivariate polynomial), {conplot} (contour plotting of a bivariate polynomial function). \medbreak \noindent \fbox{\large {Miscellaneous functions}} \noindent {det} (determinant), {qsort} (sorting of an array by the quick sort algorithm), {eval} (evaluation of a formula containing transcendental functions such as {sin}, {cos}, {tan}, {exp}, {log}) {roots} (finding all roots of a univariate polynomial), {lll} (computation of an LLL-reduced basis of a lattice). \medbreak \noindent \fbox{\large {$D$-modules}} ($D$ is the Weyl algebra) \noindent {gb } (Gr\"obner basis), {syz} (syzygy), {annfs} (Annhilating ideal of $f^s$), {bfunction}, {schreyer} (free resolution by the Schreyer method), {vMinRes} (V-minimal free resolution), {characteristic} (Characteristic variety), {restriction} in the derived category of $D$-modules, {integration} in the derived category, {tensor} in the derived category, {dual} (Dual as a D-module), {slope}. \medbreak \noindent \fbox{\large {Cohomology groups}} \noindent {deRham} (The de Rham cohomology groups of ${\bf C}^n \setminus V(f)$, {ext} (Ext modules for a holonomic $D$-module $M$ and the ring of formal power series). \medbreak \noindent \fbox{\large {Differential equations}} \noindent Helping to derive and prove {combinatorial} and {special function identities}, {gkz} (GKZ hypergeometric differential equations), {appell} (Appell's hypergeometric differential equations), {indicial} (indicial equations), {rank} (Holonomic rank), {rrank} (Holonomic rank of regular holonomic systems), {dsolv} (series solutions of holonomic systems). \medbreak \noindent \fbox{\large {OpenMATH support}} \noindent {om\_xml} (CMO to OpenMATH XML), {om\_xml\_to\_cmo} (OpenMATH XML to CMO). \medbreak \noindent \fbox{\large {Homotopy Method}} \noindent {phc} (Solving systems of algebraic equations by numerical and polyhedral homotopy methods). \medbreak \noindent \fbox{\large {Toric ideal}} \noindent {tigers} (Enumerate all Gr\"obner basis of a toric ideal. Finding test sets for integer program), {arithDeg} (Arithmetic degree of a monomial ideal), {stdPair} (Standard pair decomposition of a monomial ideal). \medbreak \noindent \fbox{\large {Communications}} \noindent {ox\_launch} (starting a server), {ox\_launch\_nox}, {ox\_shutdown}, {ox\_launch\_generic}, {generate\_port}, {try\_bind\_listen}, {try\_connect}, {try\_accept}, {register\_server}, {ox\_rpc}, {ox\_cmo\_rpc}, {ox\_execute\_string}, {ox\_reset} (reset the server), {ox\_intr}, {register\_handler}, {ox\_push\_cmo}, {ox\_push\_local}, {ox\_pop\_cmo}, {ox\_pop\_local}, {ox\_push\_cmd}, {ox\_sync}, {ox\_get}, {ox\_pops}, {ox\_select}, {ox\_flush}, {ox\_get\_serverinfo} \medbreak \noindent In addition to these functions, {Mathematica functions} can be called as server functions. \medbreak \noindent \fbox{\large {Examples}} {\footnotesize \begin{verbatim} [345] sm1_deRham([x^3-y^2*z^2,[x,y,z]]); [1,1,0,0] /* dim H^i = 1 (i=0,1), =0 (i=2,3) */ \end{verbatim}} %%\noindent %%{\footnotesize \begin{verbatim} %%[287] phc(katsura(7)); B=map(first,Phc)$ %%[291] gnuplot_plotDots(B,0)$ %%\end{verbatim} } % \epsfxsize=3cm % \begin{center} % %\epsffile{../calc2000/katsura7.ps} % \epsffile{katsura7.ps} % \end{center} %%The first components of the solutions to the system of algebraic equations Katsura 7. \medbreak \noindent \fbox{ {Authors}} Castro-Jim\'enez, Dolzmann, Hubert, Murao, Noro, Oaku, Okutani, Shimoyama, Sturm, Takayama, Tamura, Verschelde, Yokoyama.