/* $OpenXM: OpenXM/src/asir-contrib/packages/src/noro_pd.rr,v 1.4 2017/02/22 06:20:00 noro Exp $ */ import("gr")$ module noro_pd$ static GBF4,GBTrace,GBCheck,Chrem,EProcs,Procs,SatHomo,GBRat,SuccSat,RepColon,IntGB$ localf radical_membership_sat$ localf witness$ localf get_lc,tomonic,aa,ideal_intersection_m,redbase$ localf para_exec,nd_gr_rat,competitive_exec,call_func,call_func_serial$ localf call_ideal_list_intersection$ localf call_colon,call_prime_dec$ localf prime_dec2, prime_dec_main2$ localf first_second$ localf third$ localf locsat,iso_comp_para,extract_qj,colon_prime_dec,extract_comp$ localf separator$ localf member,subset,mingen,compute_gbsyz,redcoef,recompute_trace,dtop,topnum$ localf prepost$ localf monodec0,monodec,prod$ localf extract_qd,primary_check$ localf second$ localf gbrat,succsat,repcolon,comp_third_tdeg,comp_tord$ localf power$ localf syci_dec$ localf find_si0,find_si1,find_si2$ localf find_ssi0,find_ssi1,find_ssi2$ localf init_pprocs, init_eprocs, init_procs, kill_procs$ localf iso_comp$ localf prime_dec, prime_dec_main, lex_predec1, zprimedec, zprimadec$ localf complete_qdecomp, partial_qdecomp, partial_qdecomp0, complete_decomp$ localf partial_decomp, partial_decomp0, zprimacomp, zprimecomp$ localf fast_gb, incremental_gb, elim_gb, ldim, make_mod_subst$ localf rsgn, find_npos, gen_minipoly, indepset$ localf maxindep, maxindep2, contraction, contraction_m, ideal_list_intersection, ideal_intersection$ localf radical_membership, modular_radical_membership$ localf radical_membership_rep, ideal_product, saturation$ localf sat, sat_ind, sat_ind_var, colon, isat$ localf ideal_colon, ideal_sat, ideal_inclusion, qd_simp_comp, qd_remove_redundant_comp$ localf pd_simp_comp, remove_identical_comp$ localf pd_remove_redundant_comp, ppart, sq, gen_fctr, gen_nf, gen_gb_comp$ localf gen_mptop, lcfactor, compute_deg0, compute_deg, member$ localf elimination, setintersection, setminus, sep_list$ localf first, comp_tdeg, comp_tdeg_first, tdeg, comp_by_ord, comp_by_second$ localf gbcheck,chrem,sathomo,qd_check,qdb_check,intgb,gbtrace,gbf4$ SatHomo=0$ GBCheck=1$ GBRat=0$ SuccSat=0$ RepColon=0$ IntGB=0$ GBTrace=0$ GBF4=0$ #define MAX(a,b) ((a)>(b)?(a):(b)) #define ACCUM_TIME(C,R) {T1 = time(); C += (T1[0]-T0[0])+(T1[1]-T0[1]); R += (T1[3]-T0[3]); } def gbf4(A) { GBF4 = A; } def gbtrace(A) { GBTrace = A; } def gbrat(A) { GBRat = A; } def succsat(A) { SuccSat = A; } def repcolon(A) { RepColon = A; } def gbcheck(A) { if ( A ) GBCheck = 1; else GBCheck = -1; } def chrem(A) { if ( A ) Chrem = 1; else Chrem = 0; } def sathomo(A) { if ( A ) SatHomo = 1; else SatHomo = 0; } def intgb(A) { if ( A ) IntGB = 1; else IntGB = 0; } def init_eprocs() { if ( type(NoX=getopt(nox)) == -1 ) NoX = 0; if ( !EProcs ) { if ( NoX ) { P0 = ox_launch_nox(); P1 = ox_launch_nox(); } else { P0 = ox_launch(); P1 = ox_launch(); } EProcs = [P0,P1]; } } def init_pprocs(N) { if ( type(NoX=getopt(nox)) == -1 ) NoX = 0; for ( R = [], I = 0; I < N; I++ ) { P = NoX ? ox_launch_nox() : ox_launch(); R = cons(P,R); } return reverse(R); } def init_procs() { if ( type(NoX=getopt(nox)) == -1 ) NoX = 0; if ( !Procs ) { if ( NoX ) { P0 = ox_launch_nox(); P1 = ox_launch_nox(); } else { P0 = ox_launch(); P1 = ox_launch(); } Procs = [P0,P1]; } } def kill_procs() { if ( Procs ) { ox_shutdown(Procs[0]); ox_shutdown(Procs[1]); Procs = 0; } if ( EProcs ) { ox_shutdown(EProcs[0]); ox_shutdown(EProcs[1]); EProcs = 0; } } def qd_check(B,V,QD) { if ( type(Mod=getopt(mod)) == -1 ) Mod = 0; G = fast_gb(B,V,Mod,0); Iso = ideal_list_intersection(map(first,QD[0]),V,0|mod=Mod); Emb = ideal_list_intersection(map(first,QD[1]),V,0|mod=Mod); GG = ideal_intersection(Iso,Emb,V,0|mod=Mod); return gen_gb_comp(G,GG,Mod); } def primary_check(B,V) { if ( type(Mod=getopt(mod)) == -1 ) Mod = 0; G = fast_gb(B,V,Mod,0); PL = prime_dec(G,V|indep=1,mod=Mod); if ( length(PL) > 1 ) return 0; P = PL[0][0]; Y = PL[0][1]; Z = setminus(V,Y); H = elim_gb(G,Z,Y,Mod,[[0,length(Z)],[0,length(Y)]]); H = contraction(H,Z|mod=Mod); H = fast_gb(H,V,Mod,0); if ( gen_gb_comp(G,H,Mod) ) return fast_gb(P,V,Mod,0); else return 0; } def qdb_check(B,V,QD) { if ( type(Mod=getopt(mod)) == -1 ) Mod = 0; G = fast_gb(B,V,Mod,0); N = length(QD); for ( I = 0, Q = [1]; I < N; I++ ) for ( J = 0, QL = map(first,QD[I]), L = length(QL); J < L; J++ ) Q = ideal_intersection_m(Q,QL[J],V,0|mod=Mod); Q = fast_gb(Q,V,0,0); if ( !gen_gb_comp(G,Q,Mod) ) return 0; for ( I = 0; I < N; I++ ) { T = QD[I]; M = length(T); for ( J = 0; J < M; J++ ) { P = primary_check(T[J][0],V|mod=Mod); if ( !P ) return 0; PP = fast_gb(T[J][1],V,Mod,0); if ( !gen_gb_comp(P,PP,Mod) ) return 0; } } return 1; } def extract_qd(QD,V,Ind) { if ( type(Mod=getopt(mod)) == -1 ) Mod = 0; N = length(Ind); for ( I = 0, Q = [1]; I < N; I++ ) for ( J = 0, QL = map(first,QD[Ind[I]]), L = length(QL); J < L; J++ ) Q = ideal_intersection(Q,QL[J],V,0|mod=Mod); return Q; } static Tint2, RTint2$ def syci_dec(B,V) { if ( type(SI=getopt(si)) == -1 ) SI = 1; if ( SI<0 || SI>2 ) error("sycb_assdec : si should be 0,1,2"); if ( type(Mod=getopt(mod)) == -1 ) Mod = 0; if ( type(Lexdec=getopt(lexdec)) == -1 ) Lexdec = 0; if ( type(Time=getopt(time)) == -1 ) Time = 0; if ( type(Iso=getopt(iso)) == -1 ) Iso = 0; if ( type(Ass=getopt(ass)) == -1 ) Ass = 0; if ( type(Colon=getopt(colon)) == -1 ) Colon = 0; if ( type(Para=getopt(para)) == -1 ) Para = 0; /* global options */ if ( type(GBF4=getopt(f4)) == -1 ) GBF4 = 0; if ( type(GBTrace=getopt(trace)) == -1 ) GBTrace = 0; if ( type(IntGB=getopt(intgb)) == -1 ) IntGB = 0; Ord = 0; Tiso = Tint = Tpd = Text = Tint2 = 0; RTiso = RTint = RTpd = RText = RTint2 = 0; T00 = time(); G = fast_gb(B,V,Mod,Ord); IntQ = [1]; QL = RL = []; First = 1; for ( Level = 0; ; Level++ ) { T0 = time(); if ( !Level ) { PtR = prime_dec(G,V|indep=1,lexdec=Lexdec,mod=Mod,radical=1); ACCUM_TIME(Tfpd,RTfpd) Pt = PtR[0]; IntPt = PtR[1]; Rad = IntPt; if ( gen_gb_comp(G,Rad,Mod) ) { /* Gt is radical and Gt = cap Pt */ for ( T = Pt, Qt = []; T != []; T = cdr(T) ) Qt = cons([car(T)[0],car(T)[0],car(T)[1]],Qt); return [reverse(Qt)]; } } else Pt = colon_prime_dec(G,IntQ,V|lexdec=Lexdec,mod=Mod,para=Para); ACCUM_TIME(Tpd,RTpd) T0 = time(); Rt = iso_comp(G,Pt,V,Ord|mod=Mod,iso=Iso,para=Para,intq=IntQ); ACCUM_TIME(Tiso,RTiso) if ( !Level ) { if ( Iso == 3 ) { NI = length(Rt); Q = IntQ; T0 = time(); if ( Para ) { for ( J = 0, Task = []; J < NI; J++ ) { T = ["noro_pd.extract_qj",Q,V,Rt[J],Rad,Mod,SI,Colon,-1]; Task = cons(T,Task); } Task = reverse(Task); print("comps:",2); print(length(Task),2); Rt = para_exec(Para,Task); } else { for ( J = 0, T = []; J < NI; J++ ) { TJ = extract_qj(Q,V,Rt[J],Rad,Mod,SI,Colon,-1); T = cons(TJ,T); } Rt = reverse(T); } ACCUM_TIME(Text,RText) } print(""); T0 = time(); Int = Rad; for ( T = Rt; T != []; T = cdr(T) ) if ( !gb_comp(car(T)[0],car(T)[1]) ) Int = ideal_intersection_m(Int,car(T)[0],V,Ord|mod=Mod); IntQ = fast_gb(Int,V,Mod,Ord); ACCUM_TIME(Tint,RTint) RL = append(RL,[Rt]); } else if ( Iso != 3 ) { T0 = time(); IntQ = ideal_list_intersection(map(first,Rt),V,Ord|mod=Mod,isgb=1); RL = append(RL,[Rt]); ACCUM_TIME(Tint,RTint) } else { NI = length(Rt); Q = IntQ; if ( Para ) { for ( J = 0, Task = []; J < NI; J++ ) { T = ["noro_pd.extract_qj",Q,V,Rt[J],Rad,Mod,SI,Colon,-1]; Task = cons(T,Task); } Task = reverse(Task); print("comps:",2); print(length(Task),2); T0 = time(); R = para_exec(Para,Task); ACCUM_TIME(Text,RText) print(""); T0 = time(); IntQ = ideal_list_intersection(cons(IntQ,map(first,R)),V,Ord|mod=Mod); ACCUM_TIME(Tint,RTint) RL = append(RL,[R]); } else { for ( J = 0, T = []; J < NI; J++ ) { T0 = time(); TJ = extract_qj(Q,V,Rt[J],Rad,Mod,SI,Colon,-1); ACCUM_TIME(Text,RText) T = cons(TJ,T); T0 = time(); IntQ = ideal_intersection_m(IntQ,TJ[0],V,Ord|mod=Mod); ACCUM_TIME(Tint,RTint) } print(""); T0 = time(); IntQ = fast_gb(IntQ,V,Mod,Ord); ACCUM_TIME(Tint,RTint) T = reverse(T); RL = append(RL,[T]); } } QL = append(QL,[IntQ]); if ( gen_gb_comp(IntQ,G,Mod) ) break; } T0 = time(); if ( Iso != 3 && !Ass ) RL = extract_comp(QL,RL,V,Rad|mod=Mod,para=Para,si=SI,colon=Colon,ass=Ass); ACCUM_TIME(Text,RText) if ( Time ) { T1 = time(); Tall = T1[0]-T00[0]+T1[1]-T00[1]; RTall += T1[3]-T00[3]; Tass = Tall-Text; RTass = RTall-RText; print(["total",Tall,"ass",Tass,"pd",Tpd,"(fpd)",Tfpd,"iso",Tiso,"int",Tint,"ext",Text]); print(["elapsed",RTall,"ass",RTass,"pd",RTpd,"(fpd)",RTfpd,"iso",RTiso,"int",RTint,"ext",RText]); } return RL; } def extract_comp(QL,RL,V,Rad) { if ( type(Mod=getopt(mod)) == -1 ) Mod = 0; if ( type(Para=getopt(para)) == -1 ) Para = 0; if ( type(Colon=getopt(colon)) == -1 ) Colon = 0; if ( type(SI=getopt(si)) == -1 ) SI = 1; if ( type(Ass=getopt(ass)) == -1 ) Ass = 0; L = length(QL); if ( Para ) { for ( Task = [], I = 1; I < L; I++ ) { QI = QL[I-1]; RI = RL[I]; NI = length(RI); for ( J = 0, TI = []; J < NI; J++ ) { T = ["noro_pd.extract_qj",QI,V,RI[J],Rad,Mod,SI,Colon,I]; Task = cons(T,Task); } } Task = reverse(Task); print("comps:",2); print(length(Task),2); print(""); R = para_exec(Para,Task); S = vector(L); for ( I = 1; I < L; I++ ) S[I] = []; S[0] = RL[0]; for ( T = R; T != []; T = cdr(T) ) { U = car(T); Level = U[0]; Body = U[1]; S[Level] = cons(Body,S[Level]); } return vtol(S); } else { TL = [RL[0]]; for ( I = 1; I < L; I++ ) { print("level:",2); print(I,2); print(" comps:",2); print(length(RL[I]),2); print(""); QI = QL[I-1]; RI = RL[I]; NI = length(RI); for ( J = 0, TI = []; J < NI; J++ ) { TIJ = extract_qj(QI,V,RI[J],Rad,Mod,SI,Colon,-1); TI = cons(TIJ,TI); } TI = reverse(TI); TL = cons(TI,TL); } TL = reverse(TL); } return TL; } def colon_prime_dec(G,IntQ,V) { if ( type(Mod=getopt(mod)) == -1 ) Mod = 0; if ( type(Lexdec=getopt(lexdec)) == -1 ) Lexdec = 0; if ( type(Para=getopt(para)) == -1 ) Para = 0; if ( !Para ) { print("colon_pd:",2); print(length(IntQ),2); } if ( !Mod ) M = mingen(IntQ,V); else M = IntQ; if ( Para ) { L = length(M); for ( Task = [], J = 0; J < L; J++ ) if ( gen_nf(M[J],G,V,Ord,Mod) ) { T = ["noro_pd.call_colon",G,M[J],V,Mod,1]; Task = cons(T,Task); } Task = reverse(Task); R = para_exec(Para,Task); R = pd_simp_comp(R,V|mod=Mod); L = length(R); for ( Task = [], J = 0; J < L; J++ ) { T = ["noro_pd.call_prime_dec",R[J],V,1,Lexdec,Mod]; Task = cons(T,Task); } Task = reverse(Task); R = para_exec(Para,Task); for ( Pt = [], T = R; T != []; T = cdr(T) ) Pt = append(Pt,car(T)); } else { for ( R = [], T = M; T != []; T = cdr(T) ) { Ci = colon(G,car(T),V|isgb=1,mod=Mod); R = cons(Ci,R); } print("->",2); print(length(M),2); R = pd_simp_comp(R,V|mod=Mod); print("->",2); print(length(R)); #if 1 for ( Pt = [], T = R; T != []; T = cdr(T) ) { Pi = prime_dec(car(T),V|indep=1,lexdec=Lexdec,mod=Mod); Pt = append(Pt,Pi); } #else J = ideal_list_intersection(R,V,0|mod=Mod); Pt = prime_dec(J,V|indep=1,lexdec=Lexdec,mod=Mod); #endif } #if 1 Pt = pd_simp_comp(Pt,V|first=1,mod=Mod); #endif return Pt; } def call_colon(G,F,V,Mod,IsGB) { return colon(G,F,V|isgb=1,mod=Mod); } def call_prime_dec(G,V,Indep,Lexdec,Mod) { if ( type(G[0]) != 1 ) Pi = prime_dec(G,V|indep=Indep,lexdec=Lexdec,mod=Mod); else Pi = []; return Pi; } def extract_qj(Q,V,QL,Rad,Mod,SI,Colon,Level) { SIFList=[noro_pd.find_ssi0, noro_pd.find_ssi1, noro_pd.find_ssi2]; SIF = SIFList[SI]; G = QL[0]; P = QL[1]; PV = QL[2]; if ( Q != [1] ) { C = Colon ? ideal_colon(G,Q,V|mod=Mod) : P; Ok = (*SIF)(C,G,Q,Rad,V,0|mod=Mod); } else Ok = []; V0 = setminus(V,PV); HJ = elim_gb(append(Ok,G),V0,PV,Mod,[[0,length(V0)],[0,length(PV)]]); HJ = contraction(HJ,V0|mod=Mod); IJ = fast_gb(HJ,V,Mod,Ord); return Level >= 0 ? [Level,[IJ,P]] : [IJ,P]; } def power(A,I) { return A^I; } /* functions for computating a separing ideal */ /* C=G:Q, Rad=rad(Q), return J s.t. Q cap (G+J) = G */ def find_si0(C,G,Q,Rad,V,Ord) { if ( type(Mod=getopt(mod)) == -1 ) Mod = 0; for ( CI = C, I = 1; ; I++ ) { for ( T = CI, S = []; T != []; T = cdr(T) ) if ( gen_nf(car(T),Q,V,Ord,Mod) ) S = cons(car(T),S); if ( S == [] ) error("find_si0 : cannot happen"); G1 = append(S,G); Int = ideal_intersection(G1,Q,V,Ord|mod=Mod); /* check whether (Q cap (G+S)) = G */ if ( gen_gb_comp(Int,G,Mod) ) { print([0]); return reverse(S); } CI = ideal_product(CI,C,V|mod=Mod); } } def find_si1(C,G,Q,Rad,V,Ord) { if ( type(Mod=getopt(mod)) == -1 ) Mod = 0; for ( T = C, S = []; T != []; T = cdr(T) ) if ( gen_nf(car(T),Q,V,Ord,Mod) ) S = cons(car(T),S); if ( S == [] ) error("find_si1 : cannot happen"); G1 = append(S,G); Int = ideal_intersection(G1,Q,V,Ord|mod=Mod); /* check whether (Q cap (G+S)) = G */ if ( gen_gb_comp(Int,G,Mod) ) { print([0]); return reverse(S); } C = qsort(C,noro_pd.comp_tdeg); Tmp = ttttt; TV = cons(Tmp,V); Ord1 = [[0,1],[Ord,length(V)]]; Int0 = incremental_gb(append(vtol(ltov(G)*Tmp),vtol(ltov(Q)*(1-Tmp))), TV,Ord1|gbblock=[[0,length(G)]],mod=Mod); Dp = dp_gr_print(); dp_gr_print(0); for ( T = C, S = []; T != []; T = cdr(T) ) { if ( !gen_nf(car(T),Rad,V,Ord,Mod) ) continue; Ui = U = car(T); for ( I = 1; ; I++ ) { G1 = cons(Ui,G); Int = ideal_intersection(G1,Q,V,Ord|mod=Mod); if ( gen_gb_comp(Int,G,Mod) ) break; else Ui = gen_nf(Ui*U,G,V,Ord,Mod); } print([length(T),I],2); Int1 = incremental_gb(append(Int0,[Tmp*Ui]),TV,Ord1 |gbblock=[[0,length(Int0)]],mod=Mod); Int = elimination(Int1,V); if ( !gen_gb_comp(Int,G,Mod) ) { break; } else { Int0 = Int1; S = cons(Ui,S); } } print(""); dp_gr_print(Dp); return reverse(S); } def find_si2(C,G,Q,Rad,V,Ord) { if ( type(Mod=getopt(mod)) == -1 ) Mod = 0; for ( T = C, S = []; T != []; T = cdr(T) ) if ( gen_nf(car(T),Q,V,Ord,Mod) ) S = cons(car(T),S); if ( S == [] ) error("find_si2 : cannot happen"); G1 = append(S,G); Int = ideal_intersection(G1,Q,V,Ord|mod=Mod); /* check whether (Q cap (G+S)) = G */ if ( gen_gb_comp(Int,G,Mod) ) { print([0]); return reverse(S); } C = qsort(C,noro_pd.comp_tdeg); Dp = dp_gr_print(); dp_gr_print(0); Tmp = ttttt; TV = cons(Tmp,V); Ord1 = [[0,1],[Ord,length(V)]]; Int0 = incremental_gb(append(vtol(ltov(G)*Tmp),vtol(ltov(Q)*(1-Tmp))), TV,Ord1|gbblock=[[0,length(G)]],mod=Mod); for ( T = C, S = []; T != []; T = cdr(T) ) { if ( !gen_nf(car(T),Rad,V,Ord,Mod) ) continue; Ui = U = car(T); for ( I = 1; ; I++ ) { Int1 = incremental_gb(append(Int0,[Tmp*Ui]),TV,Ord1 |gbblock=[[0,length(Int0)]],mod=Mod); Int = elimination(Int1,V); if ( gen_gb_comp(Int,G,Mod) ) break; else Ui = gen_nf(Ui*U,G,V,Ord,Mod); } print([length(T),I],2); S = cons(Ui,S); } S = qsort(S,noro_pd.comp_tdeg); print(""); End = Len = length(S); Tmp = ttttt; TV = cons(Tmp,V); Ord1 = [[0,1],[Ord,length(V)]]; Prev = 1; G1 = append(G,[S[0]]); Int0 = incremental_gb(append(vtol(ltov(G1)*Tmp),vtol(ltov(Q)*(1-Tmp))), TV,Ord1|gbblock=[[0,length(G)]],mod=Mod); if ( End > 1 ) { Cur = 2; while ( Prev < Cur ) { for ( St = [], I = Prev; I < Cur; I++ ) St = cons(Tmp*S[I],St); Int1 = incremental_gb(append(Int0,St),TV,Ord1 |gbblock=[[0,length(Int0)]],mod=Mod); Int = elimination(Int1,V); if ( gen_gb_comp(Int,G,Mod) ) { print([Cur],2); Prev = Cur; Cur = Cur+idiv(End-Cur+1,2); Int0 = Int1; } else { End = Cur; Cur = Prev + idiv(Cur-Prev,2); } } for ( St = [], I = 0; I < Prev; I++ ) St = cons(S[I],St); } else St = [S[0]]; print(""); for ( I = Prev; I < Len; I++ ) { Int1 = incremental_gb(append(Int0,[Tmp*S[I]]),TV,Ord1 |gbblock=[[0,length(Int0)]],mod=Mod); Int = elimination(Int1,V); if ( gen_gb_comp(Int,G,Mod) ) { print([I],2); St = cons(S[I],St); Int0 = Int1; } } Ok = reverse(St); print(""); print([length(S),length(Ok)]); dp_gr_print(Dp); return Ok; } /* functions for computing a saturated separating ideal */ def find_ssi0(C,G,Q,Rad,V,Ord) { if ( type(Mod=getopt(mod)) == -1 ) Mod = 0; if ( type(Reduce=getopt(red)) == -1 ) Reduce = 0; for ( T = C, S = []; T != []; T = cdr(T) ) if ( gen_nf(car(T),Q,V,Ord,Mod) ) S = cons(car(T),S); if ( S == [] ) error("find_ssi0 : cannot happen"); G1 = append(S,G); Int = ideal_intersection(G1,Q,V,Ord|mod=Mod); /* check whether (Q cap (G+S)) = G */ if ( gen_gb_comp(Int,G,Mod) ) { print([0]); return reverse(S); } if ( Reduce ) { for ( T = C, U = []; T != []; T = cdr(T) ) if ( gen_nf(car(T),Rad,V,Ord,Mod) ) U = cons(car(T),U); U = reverse(U); } else U = C; for ( I = 1; ; I++ ) { print([I],2); S = map(power,U,I); G1 = append(S,G); Int = ideal_intersection(G1,Q,V,Ord|mod=Mod); /* check whether (Q cap (G+S)) = G */ if ( gen_gb_comp(Int,G,Mod) ) { print(""); return reverse(S); } } } def find_ssi1(C,G,Q,Rad,V,Ord) { if ( type(Mod=getopt(mod)) == -1 ) Mod = 0; if ( type(Reduce=getopt(red)) == -1 ) Reduce = 0; for ( T = C, S = []; T != []; T = cdr(T) ) if ( gen_nf(car(T),Q,V,Ord,Mod) ) S = cons(car(T),S); if ( S == [] ) error("find_ssi1 : cannot happen"); G1 = append(S,G); Int = ideal_intersection(G1,Q,V,Ord|mod=Mod); /* check whether (Q cap (G+S)) = G */ if ( gen_gb_comp(Int,G,Mod) ) { print([0]); return reverse(S); } dp_ord(Ord); DC = map(dp_ptod,C,V); DC = qsort(DC,noro_pd.comp_tord); C = map(dp_dtop,DC,V); print(length(C),2); if ( Reduce ) { SC = map(sq,C,Mod); SC = reverse(SC); C = reverse(C); for ( T = C, C1 = [], R1 = append(SC,Rad); T != []; T = cdr(T) ) { R0 = car(R1); R1 = cdr(R1); if ( !gen_nf(car(T),Rad,V,Ord,Mod) ) continue; if ( radical_membership(R0,R1,V|mod=Mod) ) { C1 = cons(car(T),C1); R1 = append(R1,[R0]); } } print("->",0); print(length(C1),2); C = C1; } print(" ",2); Tmp = ttttt; TV = cons(Tmp,V); Ord1 = [[0,1],[Ord,length(V)]]; Int0 = incremental_gb(append(vtol(ltov(G)*Tmp),vtol(ltov(Q)*(1-Tmp))), TV,Ord1|gbblock=[[0,length(G)]],mod=Mod); Dp = dp_gr_print(); dp_gr_print(0); for ( J = 0, T = C, S = [], GS = G; T != []; T = cdr(T), J++ ) { if ( !gen_nf(car(T),Rad,V,Ord,Mod) ) continue; Ui = U = car(T); for ( I = 1; ; I++ ) { Int1 = nd_gr(append(Int0,[Tmp*Ui]),TV,Mod,Ord1 |gbblock=[[0,length(Int0)]],newelim=1); if ( Int1 ) { Int = elimination(Int1,V); if ( gen_gb_comp(Int,G,Mod) ) break; } print("x",2); Ui = gen_nf(Ui*U,G,V,Ord,Mod); } print(J,2); Int0 = Int1; S = cons(Ui,S); } print(""); dp_gr_print(Dp); return reverse(S); } def find_ssi2(C,G,Q,Rad,V,Ord) { if ( type(Mod=getopt(mod)) == -1 ) Mod = 0; if ( type(Reduce=getopt(red)) == -1 ) Reduce = 0; for ( T = C, S = []; T != []; T = cdr(T) ) if ( gen_nf(car(T),Q,V,Ord,Mod) ) S = cons(car(T),S); if ( S == [] ) error("find_ssi2 : cannot happen"); G1 = append(S,G); Int = ideal_intersection(G1,Q,V,Ord|mod=Mod); /* check whether (Q cap (G+S)) = G */ if ( gen_gb_comp(Int,G,Mod) ) { print([0]); return reverse(S); } #if 0 dp_ord(Ord); DC = map(dp_ptod,C,V); DC = qsort(DC,noro_pd.comp_tord); C = map(dp_dtop,DC,V); #else C = qsort(C,noro_pd.comp_tdeg); #endif if ( Reduce ) { for ( T = C, C1 = [], R1 = Rad; T != []; T = cdr(T) ) { if ( !gen_nf(car(T),Rad,V,Ord,Mod) ) continue; if ( radical_membership(car(T),R1,V|mod=Mod) ) { C1 = cons(car(T),C1); R1 = cons(sq(car(T),Mod),R1); } } print(["C",length(C),"->",length(C1)]); C = reverse(C1); } for ( T = C, S = []; T != []; T = cdr(T) ) { if ( !gen_nf(car(T),Rad,V,Ord,Mod) ) continue; Ui = U = car(T); S = cons([Ui,U],S); } S = qsort(S,noro_pd.comp_tdeg_first); print(""); Dp = dp_gr_print(); dp_gr_print(0); Tmp = ttttt; TV = cons(Tmp,V); Ord1 = [[0,1],[Ord,length(V)]]; Int0 = incremental_gb(append(vtol(ltov(G)*Tmp),vtol(ltov(Q)*(1-Tmp))), TV,Ord1|gbblock=[[0,length(G)]],mod=Mod); OK = []; while ( S != [] ) { Len = length(S); print("remaining gens : ",0); print(Len); S1 = []; for ( Start = Prev = 0; Start < Len; Start = Prev ) { Cur = Start+1; print(Start,2); while ( Prev < Len ) { for ( St = [], I = Prev; I < Cur; I++ ) St = cons(Tmp*S[I][0],St); Int1 = nd_gr(append(Int0,St),TV,Mod,Ord1|gbblock=[[0,length(Int0)]],newelim=1); if ( !Int1 ) { print("x",0); break; } Int = elimination(Int1,V); if ( gen_gb_comp(Int,G,Mod) ) { print([Prev,Cur-1],2); Prev = Cur; Cur += (Prev-Start)+1; if ( Cur > Len ) Cur = Len; Int0 = Int1; } else break; } for ( I = Start; I < Prev; I++ ) OK = cons(S[I][0],OK); if ( Prev == Start ) { Ui = S[I][0]; U = S[I][1]; Ui = gen_nf(Ui*U,G,V,Ord,Mod); S1 = cons([Ui,U],S1); Prev++; } } S = reverse(S1); print(""); } print(""); OK = reverse(OK); dp_gr_print(Dp); return OK; } def iso_comp(G,L,V,Ord) { if ( type(Mod=getopt(mod)) == -1 ) Mod = 0; if ( type(IsGB=getopt(isgb)) == -1 ) IsGB = 0; if ( type(Iso=getopt(iso)) == -1 ) Iso = 0; if ( type(Para=getopt(para)) == -1 ) Para = 0; if ( type(Q=getopt(intq)) == -1 ) Q = 0; if ( type(S=getopt(sep)) == -1 ) S = 0; if ( !S ) S = separator(L,V|mod=Mod); N = length(L); print("comps : ",2); print(N); print("",2); if ( Para ) { Task = []; for ( I = 0; I < N; I++ ) { T = ["noro_pd.locsat",G,V,L[I],S[I],Mod,IsGB,Iso,Q]; Task = cons(T,Task); } Task = reverse(Task); R = para_exec(Para,Task); return R; } else { for ( I = 0, R = []; I < N; I++ ) { QI = locsat(G,V,L[I],S[I],Mod,IsGB,Iso,Q); if ( type(QI[0][0])==1 ) error("iso_comp : cannot happen"); print(".",2); R = cons(QI,R); } print(""); return reverse(R); } } def locsat(G,V,L,S,Mod,IsGB,Iso,Q) { P = L[0]; PV = L[1]; V0 = setminus(V,PV); if ( Iso==1 ) { QI = sat(G,S,V|isgb=IsGB,mod=Mod); GI = elim_gb(QI,V0,PV,Mod,[[0,length(V0)],[0,length(PV)]]); GI = fast_gb(contraction(GI,V0|mod=Mod,allv=V),V,Mod,0); } else if ( Iso==0 ) { HI = elim_gb(G,V0,PV,Mod,[[0,length(V0)],[0,length(PV)]]); GI = fast_gb(contraction(HI,V0|mod=Mod,allv=V),V,Mod,0); GI = sat(GI,S,V|isgb=IsGB,mod=Mod); } else if ( Iso==2 ) { HI = elim_gb(G,V0,PV,Mod,[[0,length(V0)],[0,length(PV)]]); TV = ttttt; if ( Mod ) GI = fast_gb(cons(TV*S-1,HI),cons(TV,V0),Mod,[[0,1],[0,length(V0)]]); else GI = nd_f4_trace(append(HI,[TV*S-1]),cons(TV,V0), 1,1,[[0,1],[0,length(V0)]]|gbblock=[[0,length(HI)]]); GI = elimination(GI,V); GI = fast_gb(contraction(GI,V0|mod=Mod,allv=V),V,Mod,0); } else if ( Iso==3 ) { GI = sat(G,S,V|isgb=IsGB,mod=Mod); } if ( Q ) GI = ideal_intersection(Q,GI,V,0|mod=Mod); return [GI,P,PV]; } /* SL prime decomposition */ def prime_dec(B,V) { if ( type(Mod=getopt(mod)) == -1 ) Mod = 0; if ( type(Indep=getopt(indep)) == -1 ) Indep = 0; if ( type(LexDec=getopt(lexdec)) == -1 ) LexDec = 0; if ( type(Rad=getopt(radical)) == -1 ) Rad = 0; B = map(sq,B,Mod); if ( LexDec ) PD = lex_predec1(B,V|mod=Mod); else PD = [B]; if ( length(PD) > 1 ) { G = ideal_list_intersection(PD,V,0|mod=Mod); PD = pd_remove_redundant_comp(G,PD,V,0|mod=Mod); } R = []; RL = []; for ( T = PD; T != []; T = cdr(T) ) { PDT = prime_dec_main(car(T),V|indep=Indep,mod=Mod); R = append(R,PDT[0]); GT = fast_gb(PDT[1],V,Mod,0); RL = append(RL,[GT]); } if ( LexDec ) R = pd_simp_comp(R,V|first=Indep,mod=Mod); if ( Rad ) { G = ideal_list_intersection(RL,V,0|mod=Mod); return [R,G]; } else return R; } def prime_dec2(B,V) { if ( type(Mod=getopt(mod)) == -1 ) Mod = 0; if ( type(Indep=getopt(indep)) == -1 ) Indep = 0; if ( type(LexDec=getopt(lexdec)) == -1 ) LexDec = 0; if ( type(Rad=getopt(radical)) == -1 ) Rad = 0; if ( type(Para=getopt(para)) == -1 || type(Para) != 4 ) Para = []; B = map(sq,B,Mod); if ( LexDec ) PD = lex_predec1(B,V|mod=Mod); else PD = [B]; if ( length(PD) > 1 ) { G = ideal_list_intersection(PD,V,0|mod=Mod); PD = pd_remove_redundant_comp(G,PD,V,0|mod=Mod); } R = []; for ( T = PD; T != []; T = cdr(T) ) R = append(prime_dec_main2(car(T),V|indep=Indep,mod=Mod,para=Para),R); if ( Indep ) { G = ideal_list_intersection(map(first,R),V,0|mod=Mod); R = pd_simp_comp(R,V|first=1,mod=Mod); } else { G = ideal_list_intersection(R,V,0|mod=Mod); R = pd_simp_comp(R,V|mod=Mod); } return Rad ? [R,G] : R; } /* returns [PD,rad(I)] */ def prime_dec_main(B,V) { Tpint = RTpint = 0; if ( type(Mod=getopt(mod)) == -1 ) Mod = 0; if ( type(Indep=getopt(indep)) == -1 ) Indep = 0; G = fast_gb(B,V,Mod,0); IntP = [1]; PD = []; DG = ltov(map(dp_ptod,G,V)); for ( Ind = [], I = length(G)-1; I >= 0; I-- ) Ind = cons(I,Ind); if ( Mod ) DG = map(dp_mod,DG,Mod,[]); while ( 1 ) { print([length(PD)],2); /* rad(G) subset IntP */ /* check if IntP subset rad(G) */ /* print([length(PD),length(IntP)],2); */ for ( T = IntP; T != []; T = cdr(T) ) if ( (G0 = radical_membership_sat(car(T),G,V|mod=Mod,isgb=1,dg=[DG,Ind])) ) { F = car(T); break; } if ( T == [] ) { print(["pint",Tpint,"rpint",RTpint]); return [PD,IntP]; } PD0 = zprimecomp(G0,V,Indep|mod=Mod); Int = ideal_list_intersection(Indep?map(first,PD0):PD0,V,0|mod=Mod); PD = append(PD,PD0); #if 1 T0=time(); IntP = ideal_intersection_m(IntP,Int,V,0|mod=Mod); dp_ord(0); DC = map(dp_ptod,IntP,V); DC = qsort(DC,noro_pd.comp_tord); IntP = map(dp_dtop,DC,V); ACCUM_TIME(Tpint,RTpint) #else IntP = ideal_intersection(IntP,Int,V,0|mod=Mod,gbblock=[[0,length(IntP)]]); #endif } } localf callsat,callzcomp; def callsat(F,G,V,Mod,DG) { return radical_membership(F,G,V|mod=Mod,isgb=1,dg=DG,sat=1); } def callzcomp(F,V,Indep,Mod) { PD0 = zprimecomp(F,V,Indep|mod=Mod); Int = ideal_list_intersection(Indep?map(first,PD0):PD0,V,0|mod=Mod); return [PD0,Int]; } def prime_dec_main2(B,V) { if ( type(Mod=getopt(mod)) == -1 ) Mod = 0; if ( type(Indep=getopt(indep)) == -1 ) Indep = 0; if ( type(Para=getopt(para)) == -1 || type(Para) != 4 ) Para = []; NPara = length(Para); G = fast_gb(B,V,Mod,0); IntP = [1]; PD = []; DG = ltov(map(dp_ptod,G,V)); for ( Ind = [], I = length(G)-1; I >= 0; I-- ) Ind = cons(I,Ind); if ( Mod ) DG = map(dp_mod,DG,Mod,[]); if ( NPara ) while ( 1 ) { IntPM = mingen(IntP,V); for ( T = IntPM, CallSat = []; T != []; T = cdr(T) ) CallSat = cons(["noro_pd.callsat",car(T),G,V,Mod,[DG,Ind]],CallSat); CallSat = reverse(CallSat); /* SatL = [[..],0,[...],...] */ SatL = para_exec(Para,CallSat); for ( T = SatL, Sat = []; T != []; T = cdr(T) ) if ( car(T) ) Sat = cons(car(T),Sat); if ( Sat == [] ) return PD; print(length(Sat),2); print("->",2); Sat = remove_identical_comp(Sat|mod=Mod); print(length(Sat)); for ( T = Sat, CallComp = []; T != []; T = cdr(T) ) CallComp = cons(["noro_pd.callzcomp",car(T),V,Indep,Mod],CallComp); CallComp = reverse(CallComp); /* PDL = [[PD0,Int],...] */ PDL = para_exec(Para,CallComp); for ( T = PDL; T != []; T = cdr(T) ) PD = append(PD,car(T)[0]); Int = ideal_list_intersection(map(second,PDL),V,0|mod=Mod); IntP = ideal_intersection(IntP,Int,V,0|mod=Mod,gbblock=[[0,length(IntP)]]); } else while ( 1 ) { /* rad(G) subset IntP */ /* check if IntP subset rad(G) */ /* print([length(PD),length(IntP)],2); */ Sat = []; IntPM = mingen(IntP,V); for ( T = IntPM; T != [] && length(Sat) < 16; T = cdr(T) ) if ( G0 = radical_membership(car(T),G,V|mod=Mod,isgb=1,dg=[DG,Ind],sat=1) ) Sat = cons(G0,Sat); if ( Sat == [] ) return PD; print(length(Sat),2); print("->",2); Sat = remove_identical_comp(Sat|mod=Mod); print(length(Sat)); for ( T = Sat; T != []; T = cdr(T) ) { PD0 = zprimecomp(car(T),V,Indep|mod=Mod); PD = append(PD,PD0); Int = ideal_list_intersection(Indep?map(first,PD0):PD0,V,0|mod=Mod); IntP = ideal_intersection(IntP,Int,V,0|mod=Mod,gbblock=[[0,length(IntP)]]); } } } /* pre-decomposition */ def lex_predec1(B,V) { if ( type(Mod=getopt(mod)) == -1 ) Mod = 0; G = fast_gb(B,V,Mod,2); for ( T = G; T != []; T = cdr(T) ) { F = gen_fctr(car(T),Mod); if ( length(F) > 2 || length(F) == 2 && F[1][1] > 1 ) { for ( R = [], S = cdr(F); S != []; S = cdr(S) ) { Ft = car(S)[0]; Gt = map(ptozp,map(gen_nf,G,[Ft],V,0,Mod)); R1 = fast_gb(cons(Ft,Gt),V,Mod,0); R = cons(R1,R); } return R; } } return [G]; } /* zero-dimensional prime/primary decomosition */ def zprimedec(B,V,Mod) { L = partial_decomp(B,V,Mod); P = L[0]; NP = L[1]; R = []; for ( ; P != []; P = cdr(P) ) R = cons(car(car(P)),R); for ( T = NP; T != []; T = cdr(T) ) { R1 = complete_decomp(car(T),V,Mod); R = append(R1,R); } return R; } def zprimadec(B,V,Mod) { L = partial_qdecomp(B,V,Mod); Q = L[0]; NQ = L[1]; R = []; for ( ; Q != []; Q = cdr(Q) ) { T = car(Q); R = cons([T[0],T[1]],R); } for ( T = NQ; T != []; T = cdr(T) ) { R1 = complete_qdecomp(car(T),V,Mod); R = append(R1,R); } return R; } def complete_qdecomp(GD,V,Mod) { GQ = GD[0]; GP = GD[1]; D = GD[2]; W = vars(GP); PV = setminus(W,V); N = length(V); PN = length(PV); U = find_npos([GP,D],V,PV,Mod); NV = ttttt; M = gen_minipoly(cons(NV-U,GQ),cons(NV,V),PV,0,NV,Mod); M = ppart(M,NV,Mod); MF = Mod ? modfctr(M,Mod) : fctr(M); R = []; for ( T = cdr(MF); T != []; T = cdr(T) ) { S = car(T); Mt = subst(S[0],NV,U); GP1 = fast_gb(cons(Mt,GP),W,Mod,0); GQ1 = fast_gb(cons(Mt^S[1],GQ),W,Mod,0); if ( PV != [] ) { GP1 = elim_gb(GP1,V,PV,Mod,[[0,N],[0,PN]]); GQ1 = elim_gb(GQ1,V,PV,Mod,[[0,N],[0,PN]]); } R = cons([GQ1,GP1],R); } return R; } def partial_qdecomp(B,V,Mod) { Elim = (Elim=getopt(elim))&&type(Elim)!=-1 ? 1 : 0; N = length(V); W = vars(B); PV = setminus(W,V); NP = length(PV); W = append(V,PV); if ( Elim && PV != [] ) Ord = [[0,N],[0,NP]]; else Ord = 0; if ( Mod ) B = nd_f4(B,W,Mod,Ord); else B = nd_gr_trace(B,W,1,GBCheck,Ord); Q = []; NQ = [[B,B,vector(N+1)]]; for ( I = length(V)-1; I >= 0; I-- ) { NQ1 = []; for ( T = NQ; T != []; T = cdr(T) ) { L = partial_qdecomp0(car(T),V,PV,Ord,I,Mod); Q = append(L[0],Q); NQ1 = append(L[1],NQ1); } NQ = NQ1; } return [Q,NQ]; } def partial_qdecomp0(GD,V,PV,Ord,I,Mod) { GQ = GD[0]; GP = GD[1]; D = GD[2]; N = length(V); PN = length(PV); W = append(V,PV); VI = V[I]; M = gen_minipoly(GQ,V,PV,Ord,VI,Mod); M = ppart(M,VI,Mod); if ( Mod ) MF = modfctr(M,Mod); else MF = fctr(M); Q = []; NQ = []; if ( length(MF) == 2 && MF[1][1] == 1 ) { D1 = D*1; D1[I] = M; GQelim = elim_gb(GQ,V,PV,Mod,Ord); GPelim = elim_gb(GP,V,PV,Mod,Ord); LD = ldim(GQelim,V); if ( deg(M,VI) == LD ) Q = cons([GQelim,GPelim,D1],Q); else NQ = cons([GQelim,GPelim,D1],NQ); return [Q,NQ]; } for ( T = cdr(MF); T != []; T = cdr(T) ) { S = car(T); Mt = S[0]; D1 = D*1; D1[I] = Mt; GQ1 = fast_gb(cons(Mt^S[1],GQ),W,Mod,Ord); GQelim = elim_gb(GQ1,V,PV,Mod,Ord); GP1 = fast_gb(cons(Mt,GP),W,Mod,Ord); GPelim = elim_gb(GP1,V,PV,Mod,Ord); D1[N] = LD = ldim(GPelim,V); for ( J = 0; J < N; J++ ) if ( D1[J] && deg(D1[J],V[J]) == LD ) break; if ( J < N ) Q = cons([GQelim,GPelim,D1],Q); else NQ = cons([GQelim,GPelim,D1],NQ); } return [Q,NQ]; } def complete_decomp(GD,V,Mod) { G = GD[0]; D = GD[1]; W = vars(G); PV = setminus(W,V); N = length(V); PN = length(PV); U = find_npos(GD,V,PV,Mod); NV = ttttt; M = gen_minipoly(cons(NV-U,G),cons(NV,V),PV,0,NV,Mod); M = ppart(M,NV,Mod); MF = Mod ? modfctr(M,Mod) : fctr(M); if ( length(MF) == 2 ) return [G]; R = []; for ( T = cdr(MF); T != []; T = cdr(T) ) { Mt = subst(car(car(T)),NV,U); G1 = fast_gb(cons(Mt,G),W,Mod,0); if ( PV != [] ) G1 = elim_gb(G1,V,PV,Mod,[[0,N],[0,PN]]); R = cons(G1,R); } return R; } def partial_decomp(B,V,Mod) { Elim = (Elim=getopt(elim))&&type(Elim)!=-1 ? 1 : 0; N = length(V); W = vars(B); PV = setminus(W,V); NP = length(PV); W = append(V,PV); if ( Elim && PV != [] ) Ord = [[0,N],[0,NP]]; else Ord = 0; if ( Mod ) B = nd_f4(B,W,Mod,Ord); else B = nd_f4_trace(B,W,1,GBCheck,Ord); P = []; NP = [[B,vector(N+1)]]; for ( I = length(V)-1; I >= 0; I-- ) { NP1 = []; for ( T = NP; T != []; T = cdr(T) ) { L = partial_decomp0(car(T),V,PV,Ord,I,Mod); P = append(L[0],P); NP1 = append(L[1],NP1); } NP = NP1; } return [P,NP]; } def partial_decomp0(GD,V,PV,Ord,I,Mod) { G = GD[0]; D = GD[1]; N = length(V); PN = length(PV); W = append(V,PV); VI = V[I]; M = gen_minipoly(G,V,PV,Ord,VI,Mod); M = ppart(M,VI,Mod); if ( Mod ) MF = modfctr(M,Mod); else MF = fctr(M); if ( length(MF) == 2 && MF[1][1] == 1 ) { D1 = D*1; D1[I] = M; Gelim = elim_gb(G,V,PV,Mod,Ord); D1[N] = LD = ldim(Gelim,V); GD1 = [Gelim,D1]; for ( J = 0; J < N; J++ ) if ( D1[J] && deg(D1[J],V[J]) == LD ) return [[GD1],[]]; return [[],[GD1]]; } P = []; NP = []; GI = elim_gb(G,V,PV,Mod,Ord); for ( T = cdr(MF); T != []; T = cdr(T) ) { Mt = car(car(T)); D1 = D*1; D1[I] = Mt; GIt = map(gen_nf,GI,[Mt],V,Ord,Mod); G1 = cons(Mt,GIt); Gelim = elim_gb(G1,V,PV,Mod,Ord); D1[N] = LD = ldim(Gelim,V); for ( J = 0; J < N; J++ ) if ( D1[J] && deg(D1[J],V[J]) == LD ) break; if ( J < N ) P = cons([Gelim,D1],P); else NP = cons([Gelim,D1],NP); } return [P,NP]; } /* prime/primary components over rational function field */ def zprimacomp(G,V) { if ( type(Mod=getopt(mod)) == -1 ) Mod = 0; L = zprimadec(G,V,0|mod=Mod); R = []; dp_ord(0); for ( T = L; T != []; T = cdr(T) ) { S = car(T); UQ = contraction(S[0],V|mod=Mod); UP = contraction(S[1],V|mod=Mod); R = cons([UQ,UP],R); } return R; } def zprimecomp(G,V,Indep) { if ( type(Mod=getopt(mod)) == -1 ) Mod = 0; W = maxindep(G,V,0|mod=Mod); V0 = setminus(V,W); V1 = append(V0,W); #if 0 O1 = [[0,length(V0)],[0,length(W)]]; G1 = fast_gb(G,V1,Mod,O1); dp_ord(0); #else G1 = G; #endif PD = zprimedec(G1,V0,Mod); dp_ord(0); R = []; for ( T = PD; T != []; T = cdr(T) ) { U = contraction(car(T),V0|mod=Mod); U = nd_gr(U,V,Mod,0); R = cons(Indep?[U,W]:U,R); } return R; } def fast_gb(B,V,Mod,Ord) { if ( type(Block=getopt(gbblock)) == -1 ) Block = []; if ( type(NoRA=getopt(nora)) == -1 ) NoRA = 0; if ( Mod ) G = nd_f4(B,V,Mod,Ord|nora=NoRA); else if ( Chrem ) G = map(ptozp,f4_chrem(B,V,Ord)); else if ( GBTrace ) { if ( GBF4 ) G = nd_f4_trace(B,V,1,1,Ord|nora=NoRA,gbblock=Block); else G = nd_gr_trace(B,V,1,1,Ord|nora=NoRA,gbblock=Block); } else { if ( GBF4 ) G = nd_f4(B,V,0,Ord|nora=NoRA,gbblock=Block); else G = nd_gr(B,V,0,Ord|nora=NoRA,gbblock=Block); } return G; } def incremental_gb(A,V,Ord) { if ( type(Mod=getopt(mod)) == -1 ) Mod = 0; if ( type(Block=getopt(gbblock)) == -1 ) Block = []; if ( Mod ) { G = fast_gb(A,V,Mod,Ord|gbblock=Block); } else if ( Procs ) { Arg0 = ["nd_f4",A,V,0,Ord]; Arg1 = ["nd_f4_trace",A,V,1,GBCheck,Ord]; G = competitive_exec(Procs,Arg0,Arg1); } else G = fast_gb(A,V,0,Ord|gbblock=Block); return G; } def elim_gb(G,V,PV,Mod,Ord) { N = length(V); PN = length(PV); O1 = [[0,N],[0,PN]]; if ( Ord == O1 ) Ord = Ord[0][0]; if ( Mod ) /* XXX */ { for ( T = G, H = []; T != []; T = cdr(T) ) if ( car(T) ) H = cons(car(T),H); G = reverse(H); G = dp_gr_mod_main(G,V,0,Mod,Ord); } else if ( EProcs ) { #if 1 Arg0 = ["dp_gr_main",G,V,0,0,Ord]; #else Arg0 = ["nd_gr",G,V,0,Ord]; #endif Arg1 = ["noro_pd.nd_gr_rat",G,V,PV,O1,Ord]; G = competitive_exec(EProcs,Arg0,Arg1); } else if ( GBRat ) { G1 = nd_gr(G,append(V,PV),0,O1); if ( GBRat == 1 ) G1 = nd_gr_postproc(G1,V,0,Ord,0|nora=1); return G1; } else #if 1 #if 0 G = dp_gr_main(G,V,0,0,Ord); #else if ( subset(vars(G),V) ) G = nd_f4_trace(G,V,1,1,Ord); else G = nd_gr_trace(G,V,1,1,Ord); #endif #else G = nd_gr(G,V,0,Ord); #endif return G; } def ldim(G,V) { O0 = dp_ord(); dp_ord(0); D = length(dp_mbase(map(dp_ptod,G,V))); dp_ord(O0); return D; } /* over Q only */ def make_mod_subst(GD,V,PV,HC) { N = length(V); PN = length(PV); G = GD[0]; D = GD[1]; for ( I = 0; ; I = (I+1)%100 ) { Mod = lprime(I); S = []; for ( J = PN-1; J >= 0; J-- ) S = append([PV[J],random()%Mod],S); for ( T = HC; T != []; T = cdr(T) ) if ( !(subst(car(T),S)%Mod) ) break; if ( T != [] ) continue; for ( J = 0; J < N; J++ ) { M = subst(D[J],S); F = modsqfr(M,Mod); if ( length(F) != 2 || F[1][1] != 1 ) break; } if ( J < N ) continue; G0 = map(subst,G,S); return [G0,Mod]; } } def rsgn() { return random()%2 ? 1 : -1; } def find_npos(GD,V,PV,Mod) { N = length(V); PN = length(PV); G = GD[0]; D = GD[1]; LD = D[N]; DH = map(dp_dtop,map(dp_ht,map(dp_ptod,D,V)),V); Ord0 = dp_ord(); dp_ord(0); HC = map(dp_hc,map(dp_ptod,G,V)); dp_ord(Ord0); if ( !Mod ) { W = append(V,PV); G1 = nd_gr_trace(G,W,1,GBCheck,[[0,N],[0,PN]]); L = make_mod_subst([G1,D],V,PV,HC); return find_npos([L[0],D],V,[],L[1]); } N = length(V); NV = ttttt; for ( B = 2; ; B++ ) { for ( J = N-2; J >= 0; J-- ) { for ( U = 0, K = J; K < N; K++ ) { if ( DH[K] == V[K] ) continue; U += rsgn()*((random()%B+1))*V[K]; } #if 0 M = minipolym(G,V,0,U,NV,Mod); #else M = gen_minipoly(cons(NV-U,G),cons(NV,V),PV,0,NV,Mod); #endif if ( deg(M,NV) == LD ) return U; } } } def gen_minipoly(G,V,PV,Ord,VI,Mod) { O0 = dp_ord(); if ( PV == [] ) { NV = sssss; if ( Mod ) M = minipolym(G,V,Ord,VI,NV,Mod); else M = minipoly(G,V,Ord,VI,NV); dp_ord(O0); return subst(M,NV,VI); } W = setminus(V,[VI]); PV1 = cons(VI,PV); #if 0 while ( 1 ) { V1 = append(W,PV1); if ( Mod ) G = nd_gr(G,V1,Mod,[[0,1],[0,length(V1)-1]]|nora=1); else G = nd_gr_trace(G,V1,1,GBCheck,[[0,1],[0,length(V1)-1]]|nora=1); if ( W == [] ) break; else { W = cdr(W); G = elimination(G,cdr(V1)); } } #elif 1 if ( Mod ) { V1 = append(W,PV1); G = nd_gr(G,V1,Mod,[[0,length(W)],[0,length(PV1)]]); G = elimination(G,PV1); } else { PV2 = setminus(PV1,[PV1[length(PV1)-1]]); V2 = append(W,PV2); G = nd_gr_trace(G,V2,1,GBCheck,[[0,length(W)],[0,length(PV2)]]|nora=1); G = elimination(G,PV1); } #else V1 = append(W,PV1); if ( Mod ) G = nd_gr(G,V1,Mod,[[0,length(W)],[0,length(PV1)]]|nora=1); else G = nd_gr_trace(G,V1,1,GBCheck,[[0,length(W)],[0,length(PV1)]]|nora=1); G = elimination(G,PV1); #endif if ( Mod ) G = nd_gr(G,PV1,Mod,[[0,1],[0,length(PV)]]|nora=1); else G = nd_gr_trace(G,PV1,1,GBCheck,[[0,1],[0,length(PV)]]|nora=1); for ( M = car(G), T = cdr(G); T != []; T = cdr(T) ) if ( deg(car(T),VI) < deg(M,VI) ) M = car(T); dp_ord(O0); return M; } def indepset(V,H) { if ( H == [] ) return V; N = -1; for ( T = V; T != []; T = cdr(T) ) { VI = car(T); HI = []; for ( S = H; S != []; S = cdr(S) ) if ( !tdiv(car(S),VI) ) HI = cons(car(S),HI); RI = indepset(setminus(V,[VI]),HI); if ( length(RI) > N ) { R = RI; N = length(RI); } } return R; } def maxindep(B,V,O) { if ( type(Mod=getopt(mod)) == -1 ) Mod = 0; G = fast_gb(B,V,Mod,O); Old = dp_ord(); dp_ord(O); H = map(dp_dtop,map(dp_ht,map(dp_ptod,G,V)),V); H = map(sq,H,0); H = nd_gr(H,V,0,0); H = monodec0(H,V); N = length(V); Dep = []; for ( T = H, Len = N+1; T != []; T = cdr(T) ) { M = length(car(T)); if ( M < Len ) { Dep = [car(T)]; Len = M; } else if ( M == Len ) Dep = cons(car(T),Dep); } R = setminus(V,Dep[0]); dp_ord(Old); return R; } def maxindep2(B,V,O) { if ( type(Mod=getopt(mod)) == -1 ) Mod = 0; G = fast_gb(B,V,Mod,O); Old = dp_ord(); dp_ord(O); H = map(dp_dtop,map(dp_ht,map(dp_ptod,G,V)),V); H = map(sq,H,0); H = nd_gr(H,V,0,0); H = monodec0(H,V); N = length(V); Dep = []; for ( T = H, Len = N+1; T != []; T = cdr(T) ) { M = length(car(T)); if ( M < Len ) { Dep = [car(T)]; Len = M; } else if ( M == Len ) Dep = cons(car(T),Dep); } R = []; for ( T = Dep; T != []; T = cdr(T) ) R = cons(setminus(V,car(T)),R); dp_ord(Old); return reverse(R); } /* ideal operations */ def contraction(G,V) { if ( type(AllV=getopt(allv)) == -1 ) AllV = 0; if ( type(Mod=getopt(mod)) == -1 ) Mod = 0; if ( RepColon ) return contraction_m(G,V|allv=AllV,mod=Mod); C = []; for ( T = G; T != []; T = cdr(T) ) { C1 = dp_hc(dp_ptod(car(T),V)); S = gen_fctr(C1,Mod); for ( S = cdr(S); S != []; S = cdr(S) ) if ( !member(S[0][0],C) ) C = cons(S[0][0],C); } W = vars(G); PV = setminus(W,V); if ( AllV ) W = AllV; else W = append(V,PV); NV = ttttt; if ( SuccSat ) { W1 = cons(NV,W); O1 = [[0,1],[0,length(W)]]; Block = []; for ( T = C; T != []; T = cdr(T) ) { G1 = nd_gr(append(G,[NV*car(T)-1]),W1,Mod,O1|gbblock=Block); G = elimination(G1,W); Block = [[0,length(G)]]; } } else { for ( T = C, S = 1; T != []; T = cdr(T) ) S *= car(T); G = saturation([G,NV],S,W|mod=Mod); } return G; } def contraction_m(G,V) { if ( type(AllV=getopt(allv)) == -1 ) AllV = 0; if ( type(Mod=getopt(mod)) == -1 ) Mod = 0; C = []; for ( T = G; T != []; T = cdr(T) ) { C1 = dp_hc(dp_ptod(car(T),V)); S = gen_fctr(C1,Mod); for ( S = cdr(S); S != []; S = cdr(S) ) if ( !member(S[0][0],C) ) C = cons(S[0][0],C); } W = vars(G); PV = setminus(W,V); if ( AllV ) W = AllV; else W = append(V,PV); H = H0 = G; while ( 1 ) { for ( T = C; T != []; T = cdr(T) ) H = map(sdiv,ideal_intersection_m([car(T)],H,W,0),car(T)); H = nd_gr(H,W,0,0); if ( gb_comp(H0,H) ) break; else H0 = H; } return H; } def ideal_list_intersection(L,V,Ord) { if ( type(Mod=getopt(mod)) == -1 ) Mod = 0; if ( type(IsGB=getopt(isgb)) == -1 ) IsGB = 0; N = length(L); if ( N == 0 ) return [1]; if ( N == 1 ) return IsGB ? L[0] : fast_gb(L[0],V,Mod,Ord); else { for ( I = 0, T = [1]; I < N; I++ ) T = ideal_intersection_m(T,L[I],V,Ord|mod=Mod); T = nd_gr(T,V,Mod,Ord); return T; } } def call_ideal_list_intersection(L,V,Mod,Ord,IsGB) { return ideal_list_intersection(L,V,Ord|mod=Mod,isgb=IsGB); } def ideal_intersection(A,B,V,Ord) { if ( type(Mod=getopt(mod)) == -1 ) Mod = 0; if ( type(Block=getopt(gbblock)) == -1 ) Block = []; T = ttttt; if ( Mod ) { G = nd_gr(append(vtol(ltov(A)*T),vtol(ltov(B)*(1-T))), cons(T,V),Mod,[[0,1],[Ord,length(V)]]|gbblock=Block,nora=0); } else if ( Procs ) { Arg0 = ["nd_gr", append(vtol(ltov(A)*T),vtol(ltov(B)*(1-T))), cons(T,V),0,[[0,1],[Ord,length(V)]]]; Arg1 = ["nd_gr_trace", append(vtol(ltov(A)*T),vtol(ltov(B)*(1-T))), cons(T,V),1,GBCheck,[[0,1],[Ord,length(V)]]]; G = competitive_exec(Procs,Arg0,Arg1); } else { G = nd_gr(append(vtol(ltov(A)*T),vtol(ltov(B)*(1-T))), cons(T,V),0,[[0,1],[Ord,length(V)]]|gbblock=Block,nora=0); } G0 = elimination(G,V); if ( 0 && !Procs ) G0 = nd_gr_postproc(G0,V,Mod,Ord,0); return G0; } def aa(A) { return [A,A]; } def ideal_intersection_m(A,B,V,Ord) { if ( type(Mod=getopt(mod)) == -1 ) Mod = 0; dp_ord(Ord); DA = map(dp_ptod,A,V); DB = ltov(map(dp_ptod,B,V)); if ( Mod ) { DA = map(dp_mod,DA,Mod,[]); DB = map(dp_mod,DB,Mod,[]); setmod(Mod); } N = length(B); for ( Ind = [], I = N-1; I >= 0; I-- ) Ind = cons(I,Ind); for ( T = DA, C = []; T != []; T = cdr(T) ) { R = Mod?dp_nf_mod(Ind,car(T),DB,1,Mod):dp_nf(Ind,car(T),DB,1); if ( !R ) C = cons([0,dp_dtop(car(T),V)],C); else C = cons([dp_dtop(car(T),V),0],C); } if ( IntGB ) { G = nd_gr(append(C,map(aa,B)),V,Mod,[1,Ord]); for ( T = G, G1 = []; T != []; T = cdr(T) ) if ( !car(T)[0] ) G1 = cons(car(T)[1],G1); G = reverse(G1); } else { G = nd_gr(append(C,map(aa,B)),V,Mod,[1,Ord]|intersect=1); G = map(second,G); } return G; } /* returns GB if F notin rad(G) */ def radical_membership(F,G,V) { if ( type(Mod=getopt(mod)) == -1 ) Mod = 0; if ( type(IsGB=getopt(isgb)) == -1 ) IsGB = 0; if ( type(L=getopt(dg)) == -1 ) L = 0; if ( type(Sat=getopt(sat)) == -1 ) Sat = 0; dp_ord(0); if ( L ) { DG = L[0]; Ind = L[1]; } else { DG = ltov(map(dp_ptod,G,V)); if ( Mod ) DG = map(dp_mod,DG,Mod,[]); for ( Ind = [], I = length(G)-1; I >= 0; I-- ) Ind = cons(I,Ind); } DF = dp_ptod(F,V); DFI = dp_ptod(1,V); if ( Mod ) { DF = dp_mod(DF,Mod,[]); DFI = dp_mod(DFI,Mod,[]); setmod(Mod); } for ( I = 0; I < 3; I++ ) { DFI = Mod?dp_nf_mod(Ind,DF*DFI,DG,0,Mod):dp_nf(Ind,DF*DFI,DG,0); if ( !DFI ) return 0; } NV = ttttt; if ( IsGB ) T = nd_gr(append(G,[NV*F-1]),cons(NV,V),Mod,0 |gbblock=[[0,length(G)]]); else T = nd_gr(append(G,[NV*F-1]),cons(NV,V),Mod,0); if ( type(car(T)) == 1 ) return 0; else if ( Sat ) { G1 = fast_gb(T,cons(NV,V),Mod,[[0,1],[0,length(V)]]); G0 = elimination(G1,V); return G0; } else return [T,NV]; } def radical_membership_sat(F,G,V) { if ( type(Mod=getopt(mod)) == -1 ) Mod = 0; if ( type(IsGB=getopt(isgb)) == -1 ) IsGB = 0; if ( type(L=getopt(dg)) == -1 ) L = 0; dp_ord(0); if ( L ) { DG = L[0]; Ind = L[1]; } else { DG = ltov(map(dp_ptod,G,V)); if ( Mod ) DG = map(dp_mod,DG,Mod,[]); for ( Ind = [], I = length(G)-1; I >= 0; I-- ) Ind = cons(I,Ind); } DF = dp_ptod(F,V); DFI = dp_ptod(1,V); if ( Mod ) { DF = dp_mod(DF,Mod,[]); DFI = dp_mod(DFI,Mod,[]); setmod(Mod); } for ( I = 0; I < 3; I++ ) { DFI = Mod?dp_nf_mod(Ind,DF*DFI,DG,0,Mod):dp_nf(Ind,DF*DFI,DG,0); if ( !DFI ) return 0; } NV = ttttt; if ( IsGB ) T = nd_gr(append(G,[NV*F-1]),cons(NV,V),Mod,[[0,1],[0,length(V)]] |gbblock=[[0,length(G)]]); else T = nd_gr(append(G,[NV*F-1]),cons(NV,V),Mod,[[0,1],[0,length(V)]]); if ( type(car(T)) == 1 ) return 0; G0 = elimination(T,V); return G0; } def modular_radical_membership(F,G,V) { if ( type(Mod=getopt(mod)) == -1 ) Mod = 0; if ( Mod ) return radical_membership(F,G,V|mod=Mod); F = gen_nf(F,G,V,0,0); if ( !F ) return 0; NV = ttttt; for ( J = 0; ; J++ ) { Mod = lprime(J); H = map(dp_hc,map(dp_ptod,G,V)); for ( ; H != []; H = cdr(H) ) if ( !(car(H)%Mod) ) break; if ( H != [] ) continue; T = nd_f4(cons(NV*F-1,G),cons(NV,V),Mod,0); if ( type(car(T)) == 1 ) { I = radical_membership_rep(F,G,V,-1,0,Mod); I1 = radical_membership_rep(F,G,V,I,0,0); if ( I1 > 0 ) return 0; } return radical_membership(F,G,V); } } def radical_membership_rep(F,G,V,Max,Ord,Mod) { Ft = F; I = 1; while ( Max < 0 || I <= Max ) { Ft = gen_nf(Ft,G,V,Ord,Mod); if ( !Ft ) return I; Ft *= F; I++; } return -1; } def ideal_product(A,B,V) { if ( type(Mod=getopt(mod)) == -1 ) Mod = 0; dp_ord(0); DA = map(dp_ptod,A,V); DB = map(dp_ptod,B,V); DegA = map(dp_td,DA); DegB = map(dp_td,DB); for ( PA = [], T = A, DT = DegA; T != []; T = cdr(T), DT = cdr(DT) ) PA = cons([car(T),car(DT)],PA); PA = reverse(PA); for ( PB = [], T = B, DT = DegB; T != []; T = cdr(T), DT = cdr(DT) ) PB = cons([car(T),car(DT)],PB); PB = reverse(PB); R = []; for ( T = PA; T != []; T = cdr(T) ) for ( S = PB; S != []; S = cdr(S) ) R = cons([car(T)[0]*car(S)[0],car(T)[1]+car(S)[1]],R); T = qsort(R,noro_pd.comp_by_second); T = map(first,T); Len = length(A)>length(B)?length(A):length(B); Len *= 2; L = sep_list(T,Len); B0 = L[0]; B1 = L[1]; R = fast_gb(B0,V,Mod,0); while ( B1 != [] ) { print(length(B1)); L = sep_list(B1,Len); B0 = L[0]; B1 = L[1]; R = fast_gb(append(R,B0),V,Mod,0|gbblock=[[0,length(R)]],nora=1); } return R; } def saturation(GNV,F,V) { if ( type(Mod=getopt(mod)) == -1 ) Mod = 0; G = GNV[0]; NV = GNV[1]; if ( Mod ) G1 = fast_gb(cons(NV*F-1,G),cons(NV,V),Mod,[[0,1],[0,length(V)]]); else if ( Procs ) { Arg0 = ["nd_f4_trace", cons(NV*F-1,G),cons(NV,V),0,GBCheck,[[0,1],[0,length(V)]]]; Arg1 = ["nd_f4_trace", cons(NV*F-1,G),cons(NV,V),1,GBCheck,[[0,1],[0,length(V)]]]; G1 = competitive_exec(Procs,Arg0,Arg1); } else G1 = fast_gb(cons(NV*F-1,G),cons(NV,V),0,[[0,1],[0,length(V)]]); return elimination(G1,V); } def sat(G,F,V) { if ( type(Mod=getopt(mod)) == -1 ) Mod = 0; if ( type(IsGB=getopt(isgb)) == -1 ) IsGB = 0; NV = ttttt; if ( Mod ) G1 = fast_gb(cons(NV*F-1,G),cons(NV,V),Mod,[[0,1],[0,length(V)]]); else if ( Procs ) { Arg0 = ["nd_f4_trace", cons(NV*F-1,G),cons(NV,V),0,GBCheck,[[0,1],[0,length(V)]]]; Arg1 = ["nd_f4_trace", cons(NV*F-1,G),cons(NV,V),1,GBCheck,[[0,1],[0,length(V)]]]; G1 = competitive_exec(Procs,Arg0,Arg1); } else { B1 = append(G,[NV*F-1]); V1 = cons(NV,V); Ord1 = [[0,1],[0,length(V)]]; if ( IsGB ) G1 = fast_gb(B1,V1,0,Ord1|gbblock=[[0,length(G)]]); else G1 = fast_gb(B1,V1,0,Ord1); } return elimination(G1,V); } def isat(B,S,V) { if ( type(Mod=getopt(mod)) == -1 ) Mod = 0; if ( type(IsGB=getopt(isgb)) == -1 ) IsGB = 0; F = cdr(fctr(S)); R = B; for ( T = F; T != []; T = cdr(T) ) R = sat(R,car(T)[0],V|mod=Mod,isgb=IsGB); return R; } /* homogeneous case only */ def sat_ind_var(G,F,V) { if ( type(Ord=getopt(ord)) == -1 ) Ord = 0; if ( type(Mod=getopt(mod)) == -1 ) Mod = 0; V0 = append(setminus(V,[F]),[F]); G0 = nd_gr(G,V0,Mod,0); M = 0; for ( G1 = [], T = G0; T != []; T = cdr(T) ) { S = car(T); M1 = mindeg(S,F); S = sdiv(S,F^M1); G1 = cons(S,G1); if ( M1 > M ) M = M1; } G1 = nd_gr(G1,V,Mod,Ord); return [G1,M]; } def sat_ind(G,F,V) { if ( type(Ord=getopt(ord)) == -1 ) Ord = 0; if ( type(Mod=getopt(mod)) == -1 ) Mod = 0; NV = ttttt; F = gen_nf(F,G,V,Ord,Mod); for ( I = 0, GI = G; ; I++ ) { G1 = colon(GI,F,V|mod=Mod,ord=Ord); if ( ideal_inclusion(G1,GI,V,Ord|mod=Mod) ) { return [GI,I]; } else GI = G1; } } def colon(G,F,V) { if ( type(Ord=getopt(ord)) == -1 ) Ord = 0; if ( type(Mod=getopt(mod)) == -1 ) Mod = 0; if ( type(IsGB=getopt(isgb)) == -1 ) IsGB = 0; F = gen_nf(F,G,V,Ord,Mod); if ( !F ) return [1]; if ( IsGB ) T = ideal_intersection(G,[F],V,Ord|gbblock=[[0,length(G)]],mod=Mod); else T = ideal_intersection(G,[F],V,Ord|mod=Mod); Gen = Mod?map(sdivm,T,F,Mod):map(ptozp,map(sdiv,T,F)); return nd_gr(Gen,V,Mod,Ord); } #if 1 def ideal_colon(G,F,V) { if ( type(Mod=getopt(mod)) == -1 ) Mod = 0; G = nd_gr(G,V,Mod,0); C = [1]; TV = ttttt; F = qsort(F,noro_pd.comp_tdeg); for ( T = F; T != []; T = cdr(T) ) { S = colon(G,car(T),V|isgb=1,mod=Mod); if ( type(S[0])!= 1 ) { C = nd_gr(append(vtol(ltov(C)*TV),vtol(ltov(S)*(1-TV))), cons(TV,V),Mod,[[0,1],[Ord,length(V)]]|gbblock=[[0,length(C)]]); C = elimination(C,V); } } return C; } #else def ideal_colon(G,F,V) { if ( type(Mod=getopt(mod)) == -1 ) Mod = 0; G = nd_gr(G,V,Mod,0); for ( T = F, L = []; T != []; T = cdr(T) ) { C = colon(G,car(T),V|isgb=1,mod=Mod); if ( type(C[0]) != 1 ) L = cons(C,L); } L = reverse(L); return ideal_list_intersection(L,V,0|mod=Mod); } #endif def member(A,L) { for ( ; L != []; L = cdr(L) ) if ( car(L) == A ) return 1; return 0; } /* return 1 of A is a subset of B */ def subset(A,B) { for ( ; A != []; A = cdr(A) ) if ( !member(car(A),B) ) return 0; return 1; } def mingen(B,V) { if ( type(Mod=getopt(mod)) == -1 ) Mod = 0; Data = nd_gr(B,V,Mod,O|gentrace=1,gensyz=1); G = Data[0]; STrace = Data[6]; N = length(G); S = compute_gbsyz(N,V,STrace,Mod); for ( T = S, R = []; T != []; T = cdr(T) ) { for ( A = car(T); A1 = dp_rest(A); A = A1); if ( type(dp_hc(A)) ==1 ) R = cons(dp_etov(A)[0],R); } for ( I = 0, U = []; I < N; I++ ) if ( !member(I,R) ) U = cons(G[I],U); return U; } def compute_gbsyz(N,V,Trace,Mod) { P = vector(N); for ( I = 0; I < N; I++ ) P[I] = dp_ptod(x^I,[x]); for ( U = [], T = Trace; T != []; T = cdr(T) ) { Ti = car(T); if ( Ti[0] != -1 ) error("Input is not a GB"); R = recompute_trace(Ti[1],P,V,Mod); U = cons(R,U); } return reverse(U); } def recompute_trace(Ti,P,V,Mod) { for ( Num = 0, Den = 1; Ti != []; Ti = cdr(Ti) ) { Sj = car(Ti); Dj = Sj[0]; Ij =Sj[1]; Mj = dp_dtop(Sj[2],V); Cj = Sj[3]; /* Num/Den <- (Dj*Num+Den*Mj*P[Ij])/(Den*Cj) */ if ( Dj ) Num = (Dj*Num+Den*Mj*P[Ij]); Den *= Cj; } return Num; } def ideal_sat(G,F,V) { if ( type(Mod=getopt(mod)) == -1 ) Mod = 0; G = nd_gr(G,V,Mod,0); for ( T = F, L = []; T != []; T = cdr(T) ) L = cons(sat(G,car(T),V|mod=Mod),L); L = reverse(L); return ideal_list_intersection(L,V,0|mod=Mod); } def ideal_inclusion(F,G,V,O) { if ( type(Mod=getopt(mod)) == -1 ) Mod = 0; for ( T = F; T != []; T = cdr(T) ) if ( gen_nf(car(T),G,V,O,Mod) ) return 0; return 1; } /* remove redundant components */ def qd_simp_comp(QP,V) { if ( type(Mod=getopt(mod)) == -1 ) Mod = 0; R = ltov(QP); N = length(R); for ( I = 0; I < N; I++ ) { if ( R[I] ) { QI = R[I][0]; PI = R[I][1]; for ( J = I+1; J < N; J++ ) if ( R[J] && gen_gb_comp(PI,R[J][1],Mod) ) { QI = ideal_intersection(QI,R[J][0],V,0|mod=Mod); R[J] = 0; } R[I] = [QI,PI]; } } for ( I = N-1, S = []; I >= 0; I-- ) if ( R[I] ) S = cons(R[I],S); return S; } def qd_remove_redundant_comp(G,Iso,Emb,V,Ord) { if ( type(Mod=getopt(mod)) == -1 ) Mod = 0; IsoInt = ideal_list_intersection(map(first,Iso),V,Ord|mod=Mod); Emb = qd_simp_comp(Emb,V|mod=Mod); Emb = reverse(qsort(Emb)); A = ltov(Emb); N = length(A); Pre = IsoInt; Post = vector(N+1); for ( Post[N] = IsoInt, I = N-1; I >= 1; I-- ) Post[I] = ideal_intersection(Post[I+1],A[I][0],V,Ord|mod=Mod); for ( I = 0; I < N; I++ ) { print(".",2); Int = ideal_intersection(Pre,Post[I+1],V,Ord|mod=Mod); if ( gen_gb_comp(Int,G,Mod) ) A[I] = 0; else Pre = ideal_intersection(Pre,A[I][0],V,Ord|mod=Mod); } for ( T = [], I = 0; I < N; I++ ) if ( A[I] ) T = cons(A[I],T); return reverse(T); } def pd_simp_comp(PL,V) { if ( type(Mod=getopt(mod)) == -1 ) Mod = 0; if ( type(First=getopt(first)) == -1 ) First = 0; A = ltov(PL); N = length(A); if ( N == 1 ) return PL; for ( I = 0; I < N; I++ ) { if ( !A[I] ) continue; AI = First?A[I][0]:A[I]; for ( J = 0; J < N; J++ ) { if ( J == I || !A[J] ) continue; AJ = First?A[J][0]:A[J]; if ( gen_gb_comp(AI,AJ,Mod) || ideal_inclusion(AI,AJ,V,Ord|mod=Mod) ) A[J] = 0; } } for ( I = 0, T = []; I < N; I++ ) if ( A[I] ) T = cons(A[I],T); return reverse(T); } def pd_remove_redundant_comp(G,P,V,Ord) { if ( type(Mod=getopt(mod)) == -1 ) Mod = 0; if ( type(First=getopt(first)) == -1 ) First = 0; if ( length(P) == 1 ) return P; A = ltov(P); N = length(A); for ( I = 0; I < N; I++ ) { if ( !A[I] ) continue; for ( J = I+1; J < N; J++ ) if ( A[J] && gen_gb_comp(First?A[I][0]:A[I],First?A[J][0]:A[J],Mod) ) A[J] = 0; } for ( I = 0, T = []; I < N; I++ ) if ( A[I] ) T = cons(A[I],T); A = ltov(reverse(T)); N = length(A); Pre = [1]; Post = vector(N+1); for ( Post[N] = [1], I = N-1; I >= 1; I-- ) Post[I] = ideal_intersection(Post[I+1],First?A[I][0]:A[I],V,Ord|mod=Mod); for ( I = 0; I < N; I++ ) { Int = ideal_intersection(Pre,Post[I+1],V,Ord|mod=Mod); if ( gen_gb_comp(Int,G,Mod) ) A[I] = 0; else Pre = ideal_intersection(Pre,First?A[I][0]:A[I],V,Ord|mod=Mod); } for ( T = [], I = 0; I < N; I++ ) if ( A[I] ) T = cons(A[I],T); return reverse(T); } def remove_identical_comp(L) { if ( type(Mod=getopt(mod)) == -1 ) Mod = 0; if ( length(L) == 1 ) return L; A = ltov(L); N = length(A); for ( I = 0; I < N; I++ ) { if ( !A[I] ) continue; for ( J = I+1; J < N; J++ ) if ( A[J] && gen_gb_comp(A[I],A[J],Mod) ) A[J] = 0; } for ( I = 0, T = []; I < N; I++ ) if ( A[I] ) T = cons(A[I],T); return reverse(T); } /* polynomial operations */ def ppart(F,V,Mod) { if ( !Mod ) G = nd_gr([F],[V],0,0); else G = dp_gr_mod_main([F],[V],0,Mod,0); return G[0]; } def sq(F,Mod) { if ( !F ) return 0; A = cdr(gen_fctr(F,Mod)); for ( R = 1; A != []; A = cdr(A) ) R *= car(car(A)); return R; } def lcfactor(G,V,O,Mod) { O0 = dp_ord(); dp_ord(O); C = []; for ( T = G; T != []; T = cdr(T) ) { C1 = dp_hc(dp_ptod(car(T),V)); S = gen_fctr(C1,Mod); for ( S = cdr(S); S != []; S = cdr(S) ) if ( !member(S[0][0],C) ) C = cons(S[0][0],C); } dp_ord(O0); return C; } def gen_fctr(F,Mod) { if ( Mod ) return modfctr(F,Mod); else return fctr(F); } def gen_mptop(F) { if ( !F ) return F; else if ( type(F)==1 ) if ( ntype(F)==5 ) return mptop(F); else return F; else { V = var(F); D = deg(F,V); for ( R = 0, I = 0; I <= D; I++ ) if ( C = coef(F,I,V) ) R += gen_mptop(C)*V^I; return R; } } def gen_nf(F,G,V,Ord,Mod) { if ( !Mod ) return p_nf(F,G,V,Ord); setmod(Mod); dp_ord(Ord); DF = dp_mod(dp_ptod(F,V),Mod,[]); N = length(G); DG = newvect(N); for ( I = N-1, IL = []; I >= 0; I-- ) { DG[I] = dp_mod(dp_ptod(G[I],V),Mod,[]); IL = cons(I,IL); } T = dp_nf_mod(IL,DF,DG,1,Mod); for ( R = 0; T; T = dp_rest(T) ) R += gen_mptop(dp_hc(T))*dp_dtop(dp_ht(T),V); return R; } /* Ti = [D,I,M,C] */ def compute_deg0(Ti,P,V,TV) { N = length(P[0]); Num = vector(N); for ( I = 0; I < N; I++ ) Num[I] = -1; for ( ; Ti != []; Ti = cdr(Ti) ) { Sj = car(Ti); Dj = Sj[0]; Ij =Sj[1]; Mj = deg(type(Sj[2])==9?dp_dtop(Sj[2],V):Sj[2],TV); Pj = P[Ij]; if ( Dj ) for ( I = 0; I < N; I++ ) if ( Pj[I] >= 0 ) { T = Mj+Pj[I]; Num[I] = MAX(Num[I],T); } } return Num; } def compute_deg(B,V,TV,Data) { GB = Data[0]; Homo = Data[1]; Trace = Data[2]; IntRed = Data[3]; Ind = Data[4]; DB = map(dp_ptod,B,V); if ( Homo ) { DB = map(dp_homo,DB); V0 = append(V,[hhh]); } else V0 = V; Perm = Trace[0]; Trace = cdr(Trace); for ( I = length(Perm)-1, T = Trace; T != []; T = cdr(T) ) if ( (J=car(T)[0]) > I ) I = J; N = I+1; N0 = length(B); P = vector(N); for ( T = Perm, I = 0; T != []; T = cdr(T), I++ ) { Pi = car(T); C = vector(N0); for ( J = 0; J < N0; J++ ) C[J] = -1; C[Pi[1]] = 0; P[Pi[0]] = C; } for ( T = Trace; T != []; T = cdr(T) ) { Ti = car(T); P[Ti[0]] = compute_deg0(Ti[1],P,V0,TV); } M = length(Ind); for ( T = IntRed; T != []; T = cdr(T) ) { Ti = car(T); P[Ti[0]] = compute_deg0(Ti[1],P,V,TV); } R = []; for ( J = 0; J < M; J++ ) { U = P[Ind[J]]; R = cons(U,R); } return reverse(R); } /* set theoretic functions */ def member(A,S) { for ( ; S != []; S = cdr(S) ) if ( car(S) == A ) return 1; return 0; } def elimination(G,V) { for ( R = [], T = G; T != []; T = cdr(T) ) if ( setminus(vars(car(T)),V) == [] ) R =cons(car(T),R); return R; } def setintersection(A,B) { for ( L = []; A != []; A = cdr(A) ) if ( member(car(A),B) ) L = cons(car(A),L); return L; } def setminus(A,B) { for ( T = reverse(A), R = []; T != []; T = cdr(T) ) { for ( S = B, M = car(T); S != []; S = cdr(S) ) if ( car(S) == M ) break; if ( S == [] ) R = cons(M,R); } return R; } def sep_list(L,N) { if ( length(L) <= N ) return [L,[]]; R = []; for ( T = L, I = 0; I < N; I++, T = cdr(T) ) R = cons(car(T),R); return [reverse(R),T]; } def first(L) { return L[0]; } def second(L) { return L[1]; } def third(L) { return L[2]; } def first_second(L) { return [L[0],L[1]]; } def comp_tord(A,B) { DA = dp_ht(A); DB = dp_ht(B); if ( DA > DB ) return 1; else if ( DA < DB ) return -1; else return 0; } def comp_tdeg(A,B) { DA = tdeg(A); DB = tdeg(B); if ( DA > DB ) return 1; else if ( DA < DB ) return -1; else return 0; } def comp_tdeg_first(A,B) { DA = tdeg(A[0]); DB = tdeg(B[0]); if ( DA > DB ) return 1; else if ( DA < DB ) return -1; else return 0; } def comp_third_tdeg(A,B) { if ( A[2] > B[2] ) return 1; if ( A[2] < B[2] ) return -1; DA = tdeg(A[0]); DB = tdeg(B[0]); if ( DA > DB ) return 1; else if ( DA < DB ) return -1; else return 0; } def tdeg(P) { dp_ord(0); return dp_td(dp_ptod(P,vars(P))); } def comp_by_ord(A,B) { if ( dp_ht(A) > dp_ht(B) ) return 1; else if ( dp_ht(A) < dp_ht(B) ) return -1; else return 0; } def comp_by_second(A,B) { if ( A[1] > B[1] ) return 1; else if ( A[1] < B[1] ) return -1; else return 0; } def get_lc(F) { if ( type(F)==1 ) return F; V = var(F); D = deg(F,V); return get_lc(coef(F,D,V)); } def tomonic(F,Mod) { C = get_lc(F); IC = inv(C,Mod); return (IC*F)%Mod; } def gen_gb_comp(A,B,Mod) { if ( !Mod ) return gb_comp(A,B); LA = length(A); LB = length(B); if ( LA != LB ) return 0; A = map(tomonic,A,Mod); B = map(tomonic,B,Mod); A = qsort(A); B = qsort(B); if ( A != B ) return 0; return 1; } def prod(L) { for ( R = 1; L != []; L = cdr(L) ) R *= car(L); return R; } def monodec0(B,V) { M = monodec(B,V); return map(vars,M); } def monodec(B,V) { B = map(sq,B,0); G = nd_gr_postproc(B,V,0,0,0); V = vars(G); N = length(V); if ( N == 0 ) return G == [] ? [[]] : []; if ( N == 1 ) return G; if ( N < 20 ) { T = dp_mono_raddec(G,V); return map(prod,T); } X = car(V); W = cdr(V); D0 = monodec(map(subst,B,X,0),W); T0 = map(dp_ptod,D0,W); D1 = monodec(map(subst,B,X,1),W); T1 = map(dp_ptod,D1,W); #if 0 for ( T = T1; T != []; T = cdr(T) ) { for ( M = car(T), S1 = [], S = T0; S != []; S = cdr(S) ) if ( !dp_redble(car(S),M) ) S1= cons(car(S),S1); T0 = S1; } #else T0 = dp_mono_reduce(T0,T1); #endif D0 = map(dp_dtop,T0,W); D0 = vtol(X*ltov(D0)); return append(D0,D1); } def separator(P,V) { if ( type(Mod=getopt(mod)) == -1 ) Mod = 0; N = length(P); dp_ord(0); DP = vector(N); for ( I = 0; I < N; I++ ) DP[I] = qsort(ltov(map(dp_ptod,P[I][0],V)),noro_pd.comp_tord); if ( Mod ) for ( I = 0; I < N; I++ ) DP[I] = map(dp_mod,DP[I],Mod,[]); Ind = vector(N); for ( I = 0; I < N; I++ ) { for ( K = [], J = length(DP[I])-1; J >= 0; J-- ) K = cons(J,K); Ind[I] = K; } S = vector(N); for ( I = 0; I < N; I++ ) S[I] = 1; for ( I = 0; I < N; I++ ) { print(".",2); for ( J = 0; J < N; J++ ) { if ( J == I ) continue; T = DP[I]; L = length(T); if ( Mod ) { for ( K = 0; K < L; K++ ) if ( dp_nf_mod(Ind[J],T[K],DP[J],0,Mod) ) break; } else { for ( K = 0; K < L; K++ ) if ( dp_nf(Ind[J],T[K],DP[J],0) ) break; } S[J] = lcm(S[J],dp_dtop(T[K],V)); } } print(""); return S; } def prepost(PL,V) { if ( type(Mod=getopt(mod)) == -1 ) Mod = 0; A = ltov(PL); N = length(A); Pre = vector(N); Post = vector(N); R = vector(N); Pre[0] = [1]; print("pre ",2); for ( I = 1; I < N; I++, print(".",2) ) Pre[I] = ideal_intersection_m(Pre[I-1],A[I-1],V,0|mod=Mod); print("done"); print("post ",2); Post[N-1] = [1]; for ( I = N-2; I >= 0; I--, print(".",2) ) Post[I] = ideal_intersection_m(Post[I+1],A[I+1],V,0|mod=Mod); print("done"); print("int ",2); for ( I = 0; I < N; I++, print(".",2) ) R[I] = ideal_intersection_m(Pre[I],Post[I],V,0|mod=Mod); print("done"); return R; } /* XXX */ def call_func(Arg) { F = car(Arg); return call(strtov(F),cdr(Arg)); } def call_func_serial(Arg,Serial) { F = car(Arg); return [call(strtov(F),cdr(Arg)),Serial]; } def competitive_exec(P,Arg0,Arg1) { P0 = P[0]; P1 = P[1]; ox_cmo_rpc(P0,"noro_pd.call_func",Arg0|sync=1); ox_cmo_rpc(P1,"noro_pd.call_func",Arg1|sync=1); F = ox_select(P); R = ox_get(F[0]); if ( length(F) == 2 ) { ox_get(F[1]); } else { U = setminus(P,F); ox_reset(U[0]); } return R; } def nd_gr_rat(B,V,PV,Ord1,Ord) { G = nd_gr(B,append(V,PV),0,Ord1); G1 = nd_gr_postproc(G,V,0,Ord,0); return G1; } /* Task[i] = [fname,[arg0,...,argn]] */ def para_exec(Proc,Task) { Free = Proc; N = length(Task); R = []; print([N],2); print("->",2); Serial = 0; while ( N ) { while ( Task != [] && Free != [] ) { T = car(Task); Task = cdr(Task); ox_rpc(car(Free),"noro_pd.call_func_serial",T,Serial++); ox_push_cmd(car(Free),258); Free = cdr(Free); } Finish0 = Finish = ox_select(Proc); for ( ; Finish != []; Finish = cdr(Finish) ) { print(".",2); L = ox_get(car(Finish)); R = cons(L,R); N--; } print([N],2); Free = append(Free,Finish0); } print(""); R = qsort(R,noro_pd.comp_by_second); R = map(first,R); return R; } def redbase(B,V,Mod,Ord) { M = nd_gr_postproc(B,V,Mod,Ord,0); dp_ord(Ord); DM = ltov(map(dp_ptod,M,V)); if ( Mod ) DM = map(dp_mod,DM,Mod,[]); N = length(DM); for ( Ind = [], I = N-1; I >= 0; I-- ) Ind = cons(I,Ind); for ( T = B, R = vtol(DM); T != []; T = cdr(T) ) { D = dp_ptod(car(T),V); if ( Mod ) D = dp_mod(D,Mod,[]); D = Mod?dp_nf_mod(Ind,D,DM,1,Mod):dp_nf(Ind,D,DM,1); if ( D ) R = cons(D,R); } D = qsort(R,noro_pd.comp_tord); return map(dp_dtop,D,V); } def witness(A,B,V) { G = nd_gr(B,V,0,Mod); L = length(A); QL = []; PL = []; for ( I = L-1; I >= 0; I-- ) { QL = append(map(first,A[I]),QL); PL = append(map(second,A[I]),PL); } N = length(QL); Qhat = prepost(QL,V); for ( I = 0, W = []; I < N; I++ ) { for ( T = Qhat[I]; T != []; T = cdr(T) ) if ( gen_nf(car(T),QL[I],V,0,Mod) ) break; Ai = car(T); Ji = colon(G,Ai,V|isgb=1,mod=Mod); Ji = nd_gr(Ji,V,Mod,0); if ( gen_gb_comp(Ji,PL[I],Mod) ) Bi = 1; else { Ki = ideal_colon(Ji,PL[I],V|mod=Mod); for ( T = Ki; T != []; T = cdr(T) ) if ( gen_nf(car(T),Ji,V,0,Mod) ) break; Bi = car(T); } W = cons(Ai*Bi,W); Li = colon(G,W[0],V|isgb=1,mod=Mod); Li = nd_gr(Li,V,Mod,0); if ( !gen_gb_comp(Li,PL[I],Mod) ) error("afo"); } return reverse(W); } endmodule$ end$