import("gr")$ module noro_pd$ static GBCheck,F4,Procs,SatHomo$ localf init_procs, kill_procs, syca_dec, syc_dec, find_separating_ideal0$ localf find_separating_ideal1, find_separating_ideal2$ localf sy_dec, pseudo_dec, iso_comp, prima_dec$ localf prime_dec, prime_dec_main, lex_predec1, zprimedec, zprimadec$ localf complete_qdecomp, partial_qdecomp, partial_qdecomp0, complete_decomp$ localf partial_decomp, partial_decomp0, zprimacomp, zprimecomp$ localf fast_gb, incremental_gb, elim_gb, ldim, make_mod_subst$ localf rsgn, find_npos, gen_minipoly, indepset$ localf maxindep, contraction, ideal_list_intersection, ideal_intersection$ localf radical_membership, quick_radical_membership, modular_radical_membership$ localf radical_membership_rep, ideal_product, saturation$ localf sat, satind, sat_ind, colon$ localf ideal_colon, ideal_sat, ideal_inclusion, qd_simp_comp, qd_remove_redundant_comp$ localf remove_redundant_comp, remove_redundant_comp_first, ppart, sq$ localf lcfactor, compute_deg0, compute_deg, member$ localf elimination, setintersection, setminus, sep_list$ localf first_element, comp_tdeg, tdeg, comp_by_ord, comp_by_second$ localf gbcheck,f4,sathomo$ SatHomo=0$ GBCheck=1$ #define MAX(a,b) ((a)>(b)?(a):(b)) def gbcheck(A) { if ( A ) GBCheck = 1; else GBCheck = -1; } def f4(A) { if ( A ) F4 = 1; else F4 = 0; } def sathomo(A) { if ( A ) SatHomo = 1; else SatHomo = 0; } def init_procs() { if ( type(NoX=getopt(nox)) == -1 ) NoX = 0; if ( !Procs ) { if ( NoX ) { P0 = ox_launch_nox(); P1 = ox_launch_nox(); } else { P0 = ox_launch(); P1 = ox_launch(); } Procs = [P0,P1]; } } def kill_procs() { if ( Procs ) { ox_shutdown(Procs[0]); ox_shutdown(Procs[1]); Procs = 0; } } /* SYC primary decomositions */ def syca_dec(B,V) { T00 = time(); if ( type(Nolexdec=getopt(nolexdec)) == -1 ) Nolexdec = 0; if ( type(SepIdeal=getopt(sepideal)) == -1 ) SepIdeal = 1; if ( type(NoSimp=getopt(nosimp)) == -1 ) NoSimp = 0; if ( type(Time=getopt(time)) == -1 ) Time = 0; Ord = 0; Gt = G0 = G = fast_gb(B,V,0,Ord); Q0 = Q = []; IntQ0 = IntQ = [1]; First = 1; C = 0; Tass = Tiso = Tcolon = Tsep = Tirred = 0; Rass = Riso = Rcolon = Rsep = Rirred = 0; while ( 1 ) { if ( type(Gt[0])==1 ) break; T0 = time(); Pt = prime_dec(Gt,V|indep=1,nolexdec=Nolexdec); T1 = time(); Tass += T1[0]-T0[0]+T1[1]-T0[1]; Rass += T1[3]-T0[3]; T0 = time(); Qt = iso_comp(Gt,Pt,V,Ord); T1 = time(); Tiso += T1[0]-T0[0]+T1[1]-T0[1]; Riso += T1[3]-T0[3]; IntQt = ideal_list_intersection(map(first_element,Qt),V,Ord); IntPt = ideal_list_intersection(map(first_element,Pt),V,Ord); if ( First ) { IntQ0 = IntQ = IntQt; IntP = IntPt; Qi = Qt; First = 0; } else { IntQ1 = ideal_intersection(IntQ,IntQt,V,Ord); if ( gb_comp(IntQ,IntQ1) ) { G = Gt; IntP = IntPt; Q = []; IntQ = [1]; C = 0; continue; } else { IntQ = IntQ1; IntQ1 = ideal_intersection(IntQ0,IntQt,V,Ord); if ( !gb_comp(IntQ0,IntQ1) ) { IntQ0 = IntQ1; Q = append(Qt,Q); Q0 = append(Qt,Q0); } } } if ( gb_comp(IntQt,Gt) || gb_comp(IntQ,G) || gb_comp(IntQ0,G0) ) break; T0 = time(); C1 = ideal_colon(G,IntQ,V); T1 = time(); Tcolon += T1[0]-T0[0]+T1[1]-T0[1]; Rcolon += T1[3]-T0[3]; if ( C && gb_comp(C,C1) ) { G = Gt; IntP = IntPt; Q = []; IntQ = [1]; C = 0; continue; } else C = C1; T0 = time(); if ( SepIdeal == 0 ) Ok = find_separating_ideal0(C,G,IntQ,IntP,V,Ord); else if ( SepIdeal == 1 ) Ok = find_separating_ideal1(C,G,IntQ,IntP,V,Ord); else if ( SepIdeal == 2 ) Ok = find_separating_ideal2(C,G,IntQ,IntP,V,Ord); G1 = append(Ok,G); Gt1 = fast_gb(G1,V,0,Ord); T1 = time(); Tsep += T1[0]-T0[0]+T1[1]-T0[1]; Rsep += T1[3]-T0[3]; #if 0 if ( ideal_inclusion(Gt1,Gt,V,Ord) ) { G = Gt; IntP = IntPt; Q = []; IntQ = [1]; C = 0; } else #endif Gt = Gt1; } T0 = time(); if ( !NoSimp ) Q1 = qd_remove_redundant_comp(G0,Qi,Q0,V,Ord); else Q1 = Q0; if ( Time ) { T1 = time(); Tirred += T1[0]-T0[0]+T1[1]-T0[1]; Rirred += T1[3]-T0[3]; Tall = T1[0]-T00[0]+T1[1]-T00[1]; Rall += T1[3]-T00[3]; print(["total",Tall,"ass",Tass,"iso",Tiso, "colon",Tcolon,"sep",Tsep,"irred",Tirred]); print(["Rtotal",Rall,"Rass",Rass,"Riso",Riso, "Rcolon",Rcolon,"Rsep",Rsep,"Rirred",Rirred]); print(["iso",length(Qi),"emb",length(Q0),"->",length(Q1)]); } return [Qi,Q1]; } def syc_dec(B,V) { T00 = time(); if ( type(Nolexdec=getopt(nolexdec)) == -1 ) Nolexdec = 0; if ( type(SepIdeal=getopt(sepideal)) == -1 ) SepIdeal = 1; if ( type(NoSimp=getopt(nosimp)) == -1 ) NoSimp = 0; if ( type(Time=getopt(time)) == -1 ) Time = 0; Ord = 0; G = fast_gb(B,V,0,Ord); Q = []; IntQ = [1]; Gt = G; First = 1; Tass = Tiso = Tcolon = Tsep = Tirred = 0; Rass = Riso = Rcolon = Rsep = Rirred = 0; while ( 1 ) { if ( type(Gt[0])==1 ) break; T0 = time(); Pt = prime_dec(Gt,V|indep=1,nolexdec=Nolexdec); T1 = time(); Tass += T1[0]-T0[0]+T1[1]-T0[1]; Rass += T1[3]-T0[3]; T0 = time(); Qt = iso_comp(Gt,Pt,V,Ord); T1 = time(); Tiso += T1[0]-T0[0]+T1[1]-T0[1]; Riso += T1[3]-T0[3]; IntQt = ideal_list_intersection(map(first_element,Qt),V,Ord); IntPt = ideal_list_intersection(map(first_element,Pt),V,Ord); if ( First ) { IntQ = IntQt; Qi = Qt; First = 0; } else { IntQ1 = ideal_intersection(IntQ,IntQt,V,Ord); if ( !gb_comp(IntQ1,IntQ) ) Q = append(Qt,Q); } if ( gb_comp(IntQ,G) || gb_comp(IntQt,Gt) ) break; T0 = time(); C = ideal_colon(Gt,IntQt,V); T1 = time(); Tcolon += T1[0]-T0[0]+T1[1]-T0[1]; Rcolon += T1[3]-T0[3]; T0 = time(); if ( SepIdeal == 0 ) Ok = find_separating_ideal0(C,Gt,IntQt,IntPt,V,Ord); else if ( SepIdeal == 1 ) Ok = find_separating_ideal1(C,Gt,IntQt,IntPt,V,Ord); else if ( SepIdeal == 2 ) Ok = find_separating_ideal2(C,Gt,IntQt,IntPt,V,Ord); G1 = append(Ok,Gt); Gt = fast_gb(G1,V,0,Ord); T1 = time(); Tsep += T1[0]-T0[0]+T1[1]-T0[1]; Rsep += T1[3]-T0[3]; } T0 = time(); if ( !NoSimp ) Q1 = qd_remove_redundant_comp(G,Qi,Q,V,Ord); else Q1 = Q; T1 = time(); Tirred += T1[0]-T0[0]+T1[1]-T0[1]; Rirred += T1[3]-T0[3]; Tall = T1[0]-T00[0]+T1[1]-T00[1]; Rall += T1[3]-T00[3]; if ( Time ) { print(["total",Tall,"ass",Tass,"iso",Tiso, "colon",Tcolon,"sep",Tsep,"irred",Tirred]); print(["Rtotal",Rall,"Rass",Rass,"Riso",Riso, "Rcolon",Rcolon,"Rsep",Rsep,"Rirred",Rirred]); print(["iso",length(Qi),"emb",length(Q),"->",length(Q1)]); } return [Qi,Q1]; } /* C=G:Q, Rad=rad(Q), return J s.t. Q cap (G+J) = G */ def find_separating_ideal0(C,G,Q,Rad,V,Ord) { for ( CI = C, I = 1; ; I++ ) { for ( T = CI, S = []; T != []; T = cdr(T) ) if ( nd_nf(car(T),Q,V,Ord,0) ) S = cons(car(T),S); if ( S == [] ) error("find_separating_ideal0 : cannot happen"); G1 = append(S,G); Int = ideal_intersection(G1,Q,V,Ord); /* check whether (Q cap (G+S)) = G */ if ( gb_comp(Int,G) ) return reverse(S); CI = ideal_product(CI,C,V); } } def find_separating_ideal1(C,G,Q,Rad,V,Ord) { for ( T = C, S = []; T != []; T = cdr(T) ) if ( nd_nf(car(T),Q,V,Ord,0) ) S = cons(car(T),S); if ( S == [] ) error("find_separating_ideal1 : cannot happen"); G1 = append(S,G); Int = ideal_intersection(G1,Q,V,Ord); /* check whether (Q cap (G+S)) = G */ if ( gb_comp(Int,G) ) return reverse(S); /* or qsort(C,comp_tdeg) */ C = qsort(S,comp_tdeg); Tmp = ttttt; TV = cons(Tmp,V); Ord1 = [[0,1],[Ord,length(V)]]; Int0 = incremental_gb(append(vtol(ltov(G)*Tmp),vtol(ltov(Q)*(1-Tmp))), TV,Ord1|gbblock=[[0,length(G)]]); for ( T = C, S = []; T != []; T = cdr(T) ) { if ( !nd_nf(car(T),Rad,V,Ord,0) ) continue; Ui = U = car(T); for ( I = 1; ; I++ ) { G1 = cons(Ui,G); Int = ideal_intersection(G1,Q,V,Ord); if ( gb_comp(Int,G) ) break; else Ui = nd_nf(Ui*U,G,V,Ord,0); } Int1 = incremental_gb(append(Int0,[Tmp*Ui]),TV,Ord1 |gbblock=[[0,length(Int0)]]); Int = elimination(Int1,V); if ( !gb_comp(Int,G) ) break; else { Int0 = Int1; S = cons(Ui,S); } } return reverse(S); } def find_separating_ideal2(C,G,Q,Rad,V,Ord) { for ( T = C, S = []; T != []; T = cdr(T) ) if ( nd_nf(car(T),Q,V,Ord,0) ) S = cons(car(T),S); if ( S == [] ) error("find_separating_ideal2 : cannot happen"); G1 = append(S,G); Int = ideal_intersection(G1,Q,V,Ord); /* check whether (Q cap (G+S)) = G */ if ( gb_comp(Int,G) ) return reverse(S); /* or qsort(S,comp_tdeg) */ C = qsort(C,comp_tdeg); Dp = dp_gr_print(); dp_gr_print(0); for ( T = C, S = []; T != []; T = cdr(T) ) { print(length(T)); if ( !nd_nf(car(T),Rad,V,Ord,0) ) continue; Ui = U = car(T); for ( I = 1; ; I++ ) { G1 = cons(Ui,G); Int = ideal_intersection(G1,Q,V,Ord); if ( gb_comp(Int,G) ) break; else Ui = nd_nf(Ui*U,G,V,Ord,0); } S = cons(Ui,S); } S = qsort(S,comp_tdeg); /* S = reverse(S); */ Len = length(S); Tmp = ttttt; TV = cons(Tmp,V); Ord1 = [[0,1],[Ord,length(V)]]; if ( Len > 1 ) { Prev = 1; Cur = 2; G1 = append(G,[S[0]]); Int0 = incremental_gb(append(vtol(ltov(G1)*Tmp),vtol(ltov(Q)*(1-Tmp))), TV,Ord1|gbblock=[[0,length(G)]]); while ( Prev < Cur ) { for ( St = [], I = Prev; I < Cur; I++ ) St = cons(Tmp*S[I],St); Int1 = incremental_gb(append(Int0,St),TV,Ord1 |gbblock=[[0,length(Int0)]]); Int = elimination(Int1,V); if ( gb_comp(Int,G) ) { print(Cur); Prev = Cur; Cur = Cur+idiv(Len-Cur+1,2); Int0 = Int1; } else { Cur = Prev + idiv(Cur-Prev,2); } } for ( St = [], I = 0; I < Prev; I++ ) St = cons(S[I],St); Ok = reverse(St); } else Ok = [S[0]]; print([length(S),length(Ok)]); dp_gr_print(Dp); return Ok; } /* SY primary decompsition */ def sy_dec(B,V) { if ( type(Nolexdec=getopt(nolexdec)) == -1 ) Nolexdec = 0; Ord = 0; G = fast_gb(B,V,0,Ord); Q = []; IntQ = [1]; Gt = G; First = 1; while ( 1 ) { if ( type(Gt[0]) == 1 ) break; Pt = prime_dec(Gt,V|indep=1,nolexdec=Nolexdec); L = pseudo_dec(Gt,Pt,V,Ord); Qt = L[0]; Rt = L[1]; St = L[2]; IntQt = ideal_list_intersection(Qt,V,Ord); if ( First ) { IntQ = IntQt; Qi = Qt; First = 0; } else { IntQ = ideal_intersection(IntQ,IntQt,V,Ord); Q = append(Qt,Q); } if ( gb_comp(IntQ,G) ) break; for ( T = Rt; T != []; T = cdr(T) ) { if ( type(car(T)[0]) == 1 ) continue; U = sy_dec(car(T),V|nolexdec=Nolexdec); IntQ = ideal_list_intersection(cons(IntQ,U),V,Ord); Q = append(U,Q); if ( gb_comp(IntQ,G) ) break; } Gt = fast_gb(append(Gt,St),V,0,Ord); } Q = remove_redundant_comp(G,Qi,Q,V,Ord); return append(Qi,Q); } def pseudo_dec(G,L,V,Ord) { N = length(L); S = vector(N); Q = vector(N); R = vector(N); L0 = map(first_element,L); for ( I = 0; I < N; I++ ) { LI = setminus(L0,[L0[I]]); PI = ideal_list_intersection(LI,V,Ord); PI = qsort(PI,comp_tdeg); for ( T = PI; T != []; T = cdr(T) ) if ( p_nf(car(T),L0[I],V,Ord) ) break; if ( T == [] ) error("separator : cannot happen"); SI = sat_ind(G,car(T),V); QI = SI[0]; S[I] = car(T)^SI[1]; PV = L[I][1]; V0 = setminus(V,PV); #if 0 GI = fast_gb(QI,append(V0,PV),0, [[Ord,length(V0)],[Ord,length(PV)]]); #else GI = fast_gb(QI,append(V0,PV),0, [[2,length(V0)],[Ord,length(PV)]]); #endif LCFI = lcfactor(GI,V0,Ord); for ( F = 1, T = LCFI, Gt = QI; T != []; T = cdr(T) ) { St = sat_ind(Gt,T[0],V); Gt = St[0]; F *= T[0]^St[1]; } Q[I] = Gt; R[I] = fast_gb(cons(F,QI),V,0,Ord); } return [vtol(Q),vtol(R),vtol(S)]; } def iso_comp(G,L,V,Ord) { N = length(L); S = vector(N); Ind = vector(N); Q = vector(N); L0 = map(first_element,L); G = nd_gr(G,V,0,Ord); for ( I = 0; I < N; I++ ) { LI = setminus(L0,[L0[I]]); PI = ideal_list_intersection(LI,V,Ord); for ( T = PI; T != []; T = cdr(T) ) if ( p_nf(car(T),L0[I],V,Ord) ) break; if ( T == [] ) error("separator : cannot happen"); S[I] = car(T); QI = sat(G,S[I],V|isgb=1); PV = L[I][1]; V0 = setminus(V,PV); GI = elim_gb(QI,V0,PV,0,[[0,length(V0)],[0,length(PV)]]); Q[I] = [contraction(GI,V0),L0[I]]; } return vtol(Q); } /* GTZ primary decompsition */ def prima_dec(B,V) { G = nd_gr_trace(B,V,1,GBCheck,0); G0 = G; IntP = [1]; QD = []; while ( 1 ) { if ( ideal_inclusion(IntP,G0,V,0) ) return QD; W = maxindep(G,V,0); NP = length(W); V0 = setminus(V,W); N = length(V0); V1 = append(V0,W); G1 = fast_gb(G,V1,0,[[0,N],[0,NP]]); LCF = lcfactor(G1,V0,0); L = zprimacomp(G,V0); F = 1; for ( T = LCF, G2 = G1; T != []; T = cdr(T) ) { S = sat_ind(G2,T[0],V1); G2 = S[0]; F *= T[0]^S[1]; } for ( T = L, QL = []; T != []; T = cdr(T) ) QL = cons(car(T)[0],QL); Int = ideal_list_intersection(QL,V,0); IntP = ideal_intersection(IntP,Int,V,0); QD = append(QD,L); F = p_nf(F,G,V,0); G = cons(F,G); } } /* SL prime decomposition */ def prime_dec(B,V) { if ( type(Indep=getopt(indep)) == -1 ) Indep = 0; if ( type(NoLexDec=getopt(nolexdec)) == -1 ) NoLexDec = 0; B = map(sq,B); if ( !NoLexDec ) PD = lex_predec1(B,V); else PD = [B]; G = ideal_list_intersection(PD,V,0); PD = remove_redundant_comp(G,[],PD,V,0); R = []; for ( T = PD; T != []; T = cdr(T) ) R = append(prime_dec_main(car(T),V|indep=Indep),R); if ( Indep ) { G = ideal_list_intersection(map(first_element,R),V,0); if ( !NoLexDec ) R = remove_redundant_comp_first(G,R,V,0); } else { G = ideal_list_intersection(R,V,0); if ( !NoLexDec ) R = remove_redundant_comp(G,[],R,V,0); } return R; } def prime_dec_main(B,V) { if ( type(Indep=getopt(indep)) == -1 ) Indep = 0; G = nd_gr_trace(B,V,1,GBCheck,0); IntP = [1]; PD = []; while ( 1 ) { /* rad(G) subset IntP */ /* check if IntP subset rad(G) */ for ( T = IntP; T != []; T = cdr(T) ) { if ( (GNV = modular_radical_membership(car(T),G,V)) ) { F = car(T); break; } } if ( T == [] ) return PD; /* GNV = [GB(),NV] */ G1 = nd_gr_trace(GNV[0],cons(GNV[1],V),1,GBCheck,[[0,1],[0,length(V)]]); G0 = elimination(G1,V); PD0 = zprimecomp(G0,V,Indep); if ( Indep ) { Int = ideal_list_intersection(PD0[0],V,0); IndepSet = PD0[1]; for ( PD1 = [], T = PD0[0]; T != []; T = cdr(T) ) PD1 = cons([car(T),IndepSet],PD1); PD = append(PD,reverse(PD1)); } else { Int = ideal_list_intersection(PD0,V,0); PD = append(PD,PD0); } IntP = ideal_intersection(IntP,Int,V,0); } } /* pre-decomposition */ def lex_predec1(B,V) { G = nd_gr_trace(B,V,1,GBCheck,2); for ( T = G; T != []; T = cdr(T) ) { F = fctr(car(T)); if ( length(F) > 2 || length(F) == 2 && F[1][1] > 1 ) { for ( R = [], S = cdr(F); S != []; S = cdr(S) ) { Ft = car(S)[0]; Gt = map(ptozp,map(p_nf,G,[Ft],V,0)); R1 = nd_gr_trace(cons(Ft,Gt),V,1,GBCheck,0); R = cons(R1,R); } return R; } } return [G]; } /* zero-dimensional prime/primary decomosition */ def zprimedec(B,V,Mod) { L = partial_decomp(B,V,Mod); P = L[0]; NP = L[1]; R = []; for ( ; P != []; P = cdr(P) ) R = cons(car(car(P)),R); for ( T = NP; T != []; T = cdr(T) ) { R1 = complete_decomp(car(T),V,Mod); R = append(R1,R); } return R; } def zprimadec(B,V,Mod) { L = partial_qdecomp(B,V,Mod); Q = L[0]; NQ = L[1]; R = []; for ( ; Q != []; Q = cdr(Q) ) { T = car(Q); R = cons([T[0],T[1]],R); } for ( T = NQ; T != []; T = cdr(T) ) { R1 = complete_qdecomp(car(T),V,Mod); R = append(R1,R); } return R; } def complete_qdecomp(GD,V,Mod) { GQ = GD[0]; GP = GD[1]; D = GD[2]; W = vars(GP); PV = setminus(W,V); N = length(V); PN = length(PV); U = find_npos([GP,D],V,PV,Mod); NV = ttttt; M = gen_minipoly(cons(NV-U,GQ),cons(NV,V),PV,0,NV,Mod); M = ppart(M,NV,Mod); MF = Mod ? modfctr(M) : fctr(M); R = []; for ( T = cdr(MF); T != []; T = cdr(T) ) { S = car(T); Mt = subst(S[0],NV,U); GP1 = fast_gb(cons(Mt,GP),W,Mod,0); GQ1 = fast_gb(cons(Mt^S[1],GQ),W,Mod,0); if ( PV != [] ) { GP1 = elim_gb(GP1,V,PV,Mod,[[0,N],[0,PN]]); GQ1 = elim_gb(GQ1,V,PV,Mod,[[0,N],[0,PN]]); } R = cons([GQ1,GP1],R); } return R; } def partial_qdecomp(B,V,Mod) { Elim = (Elim=getopt(elim))&&type(Elim)!=-1 ? 1 : 0; N = length(V); W = vars(B); PV = setminus(W,V); NP = length(PV); W = append(V,PV); if ( Elim && PV != [] ) Ord = [[0,N],[0,NP]]; else Ord = 0; if ( Mod ) B = nd_f4(B,W,Mod,Ord); else B = nd_gr_trace(B,W,1,GBCheck,Ord); Q = []; NQ = [[B,B,vector(N+1)]]; for ( I = length(V)-1; I >= 0; I-- ) { NQ1 = []; for ( T = NQ; T != []; T = cdr(T) ) { L = partial_qdecomp0(car(T),V,PV,Ord,I,Mod); Q = append(L[0],Q); NQ1 = append(L[1],NQ1); } NQ = NQ1; } return [Q,NQ]; } def partial_qdecomp0(GD,V,PV,Ord,I,Mod) { GQ = GD[0]; GP = GD[1]; D = GD[2]; N = length(V); PN = length(PV); W = append(V,PV); VI = V[I]; M = gen_minipoly(GQ,V,PV,Ord,VI,Mod); M = ppart(M,VI,Mod); if ( Mod ) MF = modfctr(M,Mod); else MF = fctr(M); Q = []; NQ = []; if ( length(MF) == 2 && MF[1][1] == 1 ) { D1 = D*1; D1[I] = M; GQelim = elim_gb(GQ,V,PV,Mod,Ord); GPelim = elim_gb(GP,V,PV,Mod,Ord); LD = ldim(GQelim,V); if ( deg(M,VI) == LD ) Q = cons([GQelim,GPelim,D1],Q); else NQ = cons([GQelim,GPelim,D1],NQ); return [Q,NQ]; } for ( T = cdr(MF); T != []; T = cdr(T) ) { S = car(T); Mt = S[0]; D1 = D*1; D1[I] = Mt; GQ1 = fast_gb(cons(Mt^S[1],GQ),W,Mod,Ord); GQelim = elim_gb(GQ1,V,PV,Mod,Ord); GP1 = fast_gb(cons(Mt,GP),W,Mod,Ord); GPelim = elim_gb(GP1,V,PV,Mod,Ord); D1[N] = LD = ldim(GPelim,V); for ( J = 0; J < N; J++ ) if ( D1[J] && deg(D1[J],V[J]) == LD ) break; if ( J < N ) Q = cons([GQelim,GPelim,D1],Q); else NQ = cons([GQelim,GPelim,D1],NQ); } return [Q,NQ]; } def complete_decomp(GD,V,Mod) { G = GD[0]; D = GD[1]; W = vars(G); PV = setminus(W,V); N = length(V); PN = length(PV); U = find_npos(GD,V,PV,Mod); NV = ttttt; M = gen_minipoly(cons(NV-U,G),cons(NV,V),PV,0,NV,Mod); M = ppart(M,NV,Mod); MF = Mod ? modfctr(M) : fctr(M); if ( length(MF) == 2 ) return [G]; R = []; for ( T = cdr(MF); T != []; T = cdr(T) ) { Mt = subst(car(car(T)),NV,U); G1 = fast_gb(cons(Mt,G),W,Mod,0); if ( PV != [] ) G1 = elim_gb(G1,V,PV,Mod,[[0,N],[0,PN]]); R = cons(G1,R); } return R; } def partial_decomp(B,V,Mod) { Elim = (Elim=getopt(elim))&&type(Elim)!=-1 ? 1 : 0; N = length(V); W = vars(B); PV = setminus(W,V); NP = length(PV); W = append(V,PV); if ( Elim && PV != [] ) Ord = [[0,N],[0,NP]]; else Ord = 0; if ( Mod ) B = nd_f4(B,W,Mod,Ord); else B = nd_gr_trace(B,W,1,GBCheck,Ord); P = []; NP = [[B,vector(N+1)]]; for ( I = length(V)-1; I >= 0; I-- ) { NP1 = []; for ( T = NP; T != []; T = cdr(T) ) { L = partial_decomp0(car(T),V,PV,Ord,I,Mod); P = append(L[0],P); NP1 = append(L[1],NP1); } NP = NP1; } return [P,NP]; } def partial_decomp0(GD,V,PV,Ord,I,Mod) { G = GD[0]; D = GD[1]; N = length(V); PN = length(PV); W = append(V,PV); VI = V[I]; M = gen_minipoly(G,V,PV,Ord,VI,Mod); M = ppart(M,VI,Mod); if ( Mod ) MF = modfctr(M,Mod); else MF = fctr(M); if ( length(MF) == 2 && MF[1][1] == 1 ) { D1 = D*1; D1[I] = M; Gelim = elim_gb(G,V,PV,Mod,Ord); D1[N] = LD = ldim(Gelim,V); GD1 = [Gelim,D1]; for ( J = 0; J < N; J++ ) if ( D1[J] && deg(D1[J],V[J]) == LD ) return [[GD1],[]]; return [[],[GD1]]; } P = []; NP = []; GI = elim_gb(G,V,PV,Mod,Ord); for ( T = cdr(MF); T != []; T = cdr(T) ) { Mt = car(car(T)); D1 = D*1; D1[I] = Mt; GIt = map(p_nf,GI,[Mt],V,Ord); G1 = cons(Mt,GIt); Gelim = elim_gb(G1,V,PV,Mod,Ord); D1[N] = LD = ldim(Gelim,V); for ( J = 0; J < N; J++ ) if ( D1[J] && deg(D1[J],V[J]) == LD ) break; if ( J < N ) P = cons([Gelim,D1],P); else NP = cons([Gelim,D1],NP); } return [P,NP]; } /* prime/primary components over rational function field */ def zprimacomp(G,V) { L = zprimadec(G,V,0); R = []; dp_ord(0); for ( T = L; T != []; T = cdr(T) ) { S = car(T); UQ = contraction(S[0],V); UP = contraction(S[1],V); R = cons([UQ,UP],R); } return R; } def zprimecomp(G,V,Indep) { W = maxindep(G,V,0); V0 = setminus(V,W); V1 = append(V0,W); #if 0 O1 = [[0,length(V0)],[0,length(W)]]; G1 = nd_gr_trace(G,V1,1,GBCheck,O1); dp_ord(0); #else G1 = G; #endif PD = zprimedec(G1,V0,0); dp_ord(0); R = []; for ( T = PD; T != []; T = cdr(T) ) { U = contraction(car(T),V0); R = cons(U,R); } if ( Indep ) return [R,W]; else return R; } def fast_gb(B,V,Mod,Ord) { NoRA = (NoRA=getopt(nora))&&type(NoRA)!=-1 ? 1 : 0; if ( Mod ) G = nd_f4(B,V,Mod,Ord|nora=NoRA); else { if ( F4 ) G = map(ptozp,f4_chrem(B,V,Ord)); else G = nd_gr_trace(B,V,1,GBCheck,Ord|nora=NoRA); } return G; } def incremental_gb(A,V,Ord) { if ( type(Mod=getopt(mod)) == -1 ) Mod = 0; if ( type(Block=getopt(gbblock)) == -1 ) Block = 0; if ( Mod ) G = nd_gr(A,V,Mod,Ord); else if ( Procs ) { Arg0 = ["nd_gr",A,V,0,Ord]; Arg1 = ["nd_gr_trace",A,V,1,GBCheck,Ord]; G = competitive_exec(Procs,Arg0,Arg1); } else if ( Block ) G = nd_gr(A,V,0,Ord|gbblock=Block); else G = nd_gr(A,V,0,Ord); return G; } def elim_gb(G,V,PV,Mod,Ord) { N = length(V); PN = length(PV); O1 = [[0,N],[0,PN]]; if ( Ord == O1 ) Ord = Ord[0][0]; if ( Mod ) /* XXX */ G = dp_gr_mod_main(G,V,0,Mod,Ord); else if ( Procs ) { Arg0 = ["nd_gr_trace",G,V,1,GBCheck,Ord]; Arg1 = ["nd_gr_trace_rat",G,V,PV,1,GBCheck,O1,Ord]; G = competitive_exec(Procs,Arg0,Arg1); } else G = nd_gr_trace(G,V,1,GBCheck,Ord); return G; } def ldim(G,V) { O0 = dp_ord(); dp_ord(0); D = length(dp_mbase(map(dp_ptod,G,V))); dp_ord(O0); return D; } def make_mod_subst(GD,V,PV,HC) { N = length(V); PN = length(PV); G = GD[0]; D = GD[1]; for ( I = 0; ; I = (I+1)%100 ) { Mod = lprime(I); S = []; for ( J = PN-1; J >= 0; J-- ) S = append([PV[J],random()%Mod],S); for ( T = HC; T != []; T = cdr(T) ) if ( !(subst(car(T),S)%Mod) ) break; if ( T != [] ) continue; for ( J = 0; J < N; J++ ) { M = subst(D[J],S); F = modsqfr(M,Mod); if ( length(F) != 2 || F[1][1] != 1 ) break; } if ( J < N ) continue; G0 = map(subst,G,S); return [G0,Mod]; } } def rsgn() { return random()%2 ? 1 : -1; } def find_npos(GD,V,PV,Mod) { N = length(V); PN = length(PV); G = GD[0]; D = GD[1]; LD = D[N]; Ord0 = dp_ord(); dp_ord(0); HC = map(dp_hc,map(dp_ptod,G,V)); dp_ord(Ord0); if ( !Mod ) { W = append(V,PV); G1 = nd_gr_trace(G,W,1,GBCheck,[[0,N],[0,PN]]); L = make_mod_subst([G1,D],V,PV,HC); return find_npos([L[0],D],V,[],L[1]); } N = length(V); NV = ttttt; for ( B = 2; ; B++ ) { for ( J = N-2; J >= 0; J-- ) { for ( U = 0, K = J; K < N; K++ ) U += rsgn()*((random()%B+1))*V[K]; M = minipolym(G,V,0,U,NV,Mod); if ( deg(M,NV) == LD ) return U; } } } def gen_minipoly(G,V,PV,Ord,VI,Mod) { if ( PV == [] ) { NV = ttttt; if ( Mod ) M = minipolym(G,V,Ord,VI,NV,Mod); else M = minipoly(G,V,Ord,VI,NV); return subst(M,NV,VI); } W = setminus(V,[VI]); PV1 = cons(VI,PV); #if 0 while ( 1 ) { V1 = append(W,PV1); if ( Mod ) G = nd_gr(G,V1,Mod,[[0,1],[0,length(V1)-1]]|nora=1); else G = nd_gr_trace(G,V1,1,GBCheck,[[0,1],[0,length(V1)-1]]|nora=1); if ( W == [] ) break; else { W = cdr(W); G = elimination(G,cdr(V1)); } } #elif 1 if ( Mod ) { G = nd_gr(G,V1,Mod,[[0,length(W)],[0,length(PV1)]]|nora=1); G = elimination(G,PV1); } else { PV2 = setminus(PV1,[PV1[length(PV1)-1]]); V2 = append(W,PV2); G = nd_gr_trace(G,V2,1,GBCheck,[[0,length(W)],[0,length(PV2)]]|nora=1); G = elimination(G,PV1); } #else V1 = append(W,PV1); if ( Mod ) G = nd_gr(G,V1,Mod,[[0,length(W)],[0,length(PV1)]]|nora=1); else G = nd_gr_trace(G,V1,1,GBCheck,[[0,length(W)],[0,length(PV1)]]|nora=1); G = elimination(G,PV1); #endif if ( Mod ) G = nd_gr(G,PV1,Mod,[[0,1],[0,length(PV)]]|nora=1); else G = nd_gr_trace(G,PV1,1,GBCheck,[[0,1],[0,length(PV)]]|nora=1); for ( M = car(G), T = cdr(G); T != []; T = cdr(T) ) if ( deg(car(T),VI) < deg(M,VI) ) M = car(T); return M; } def indepset(V,H) { if ( H == [] ) return V; N = -1; for ( T = V; T != []; T = cdr(T) ) { VI = car(T); HI = []; for ( S = H; S != []; S = cdr(S) ) if ( !tdiv(car(S),VI) ) HI = cons(car(S),HI); RI = indepset(setminus(V,[VI]),HI); if ( length(RI) > N ) { R = RI; N = length(RI); } } return R; } def maxindep(B,V,O) { G = nd_gr_trace(B,V,1,GBCheck,O); Old = dp_ord(); dp_ord(O); H = map(dp_dtop,map(dp_ht,map(dp_ptod,G,V)),V); H = dp_mono_raddec(H,V); N = length(V); Dep = []; for ( T = H, Len = N+1; T != []; T = cdr(T) ) { M = length(car(T)); if ( M < Len ) { Dep = [car(T)]; Len = M; } else if ( M == Len ) Dep = cons(car(T),Dep); } R = setminus(V,Dep[0]); dp_ord(Old); return R; } /* ideal operations */ def contraction(G,V) { C = []; for ( T = G; T != []; T = cdr(T) ) { C1 = dp_hc(dp_ptod(car(T),V)); S = fctr(C1); for ( S = cdr(S); S != []; S = cdr(S) ) if ( !member(S[0][0],C) ) C = cons(S[0][0],C); } W = vars(G); PV = setminus(W,V); W = append(V,PV); NV = ttttt; for ( T = C, S = 1; T != []; T = cdr(T) ) S *= car(T); G = saturation([G,NV],S,W); return G; } def ideal_list_intersection(L,V,Ord) { if ( type(Mod=getopt(mod)) == -1 ) Mod = 0; N = length(L); if ( N == 0 ) return [1]; if ( N == 1 ) return fast_gb(L[0],V,Mod,Ord); N2 = idiv(N,2); for ( L1 = [], I = 0; I < N2; I++ ) L1 = cons(L[I],L1); for ( L2 = []; I < N; I++ ) L2 = cons(L[I],L2); I1 = ideal_list_intersection(L1,V,Ord|mod=Mod); I2 = ideal_list_intersection(L2,V,Ord|mod=Mod); return ideal_intersection(I1,I2,V,Ord|mod=Mod, gbblock=[[0,length(I1)],[length(I1),length(I2)]]); } def ideal_intersection(A,B,V,Ord) { if ( type(Mod=getopt(mod)) == -1 ) Mod = 0; if ( type(Block=getopt(gbblock)) == -1 ) Block = 0; T = ttttt; if ( Mod ) G = nd_gr(append(vtol(ltov(A)*T),vtol(ltov(B)*(1-T))), cons(T,V),Mod,[[0,1],[Ord,length(V)]]); else if ( Procs ) { Arg0 = ["nd_gr", append(vtol(ltov(A)*T),vtol(ltov(B)*(1-T))), cons(T,V),0,[[0,1],[Ord,length(V)]]]; Arg1 = ["nd_gr_trace", append(vtol(ltov(A)*T),vtol(ltov(B)*(1-T))), cons(T,V),1,GBCheck,[[0,1],[Ord,length(V)]]]; G = competitive_exec(Procs,Arg0,Arg1); } else { if ( Block ) G = nd_gr(append(vtol(ltov(A)*T),vtol(ltov(B)*(1-T))), cons(T,V),0,[[0,1],[Ord,length(V)]]|gbblock=Block); else G = nd_gr(append(vtol(ltov(A)*T),vtol(ltov(B)*(1-T))), cons(T,V),0,[[0,1],[Ord,length(V)]]); } G0 = elimination(G,V); return G0; } /* returns GB if F notin rad(G) */ def radical_membership(F,G,V) { F = p_nf(F,G,V,0); if ( !F ) return 0; NV = ttttt; T = nd_gr_trace(cons(NV*F-1,G),cons(NV,V),1,GBCheck,0); if ( type(car(T)) != 1 ) return [T,NV]; else return 0; } def quick_radical_membership(F,G,V) { F = p_nf(F,G,V,0); if ( !F ) return 1; NV = ttttt; T = nd_f4(cons(NV*F-1,G),cons(NV,V),lprime(0),0); if ( type(car(T)) != 1 ) return 0; else return 1; } def modular_radical_membership(F,G,V) { F = p_nf(F,G,V,0); if ( !F ) return 0; NV = ttttt; for ( J = 0; ; J++ ) { Mod = lprime(J); H = map(dp_hc,map(dp_ptod,G,V)); for ( ; H != []; H = cdr(H) ) if ( !(car(H)%Mod) ) break; if ( H != [] ) continue; T = nd_f4(cons(NV*F-1,G),cons(NV,V),Mod,0); if ( type(car(T)) == 1 ) { I = radical_membership_rep(F,G,V,-1,0,Mod); I1 = radical_membership_rep(F,G,V,I,0,0); if ( I1 > 0 ) return 0; } return radical_membership(F,G,V); } } def radical_membership_rep(F,G,V,Max,Ord,Mod) { Ft = F; I = 1; while ( Max < 0 || I <= Max ) { Ft = nd_nf(Ft,G,V,Ord,Mod); if ( !Ft ) return I; Ft *= F; I++; } return -1; } def ideal_product(A,B,V) { dp_ord(0); DA = map(dp_ptod,A,V); DB = map(dp_ptod,B,V); DegA = map(dp_td,DA); DegB = map(dp_td,DB); for ( PA = [], T = A, DT = DegA; T != []; T = cdr(T), DT = cdr(DT) ) PA = cons([car(T),car(DT)],PA); PA = reverse(PA); for ( PB = [], T = B, DT = DegB; T != []; T = cdr(T), DT = cdr(DT) ) PB = cons([car(T),car(DT)],PB); PB = reverse(PB); R = []; for ( T = PA; T != []; T = cdr(T) ) for ( S = PB; S != []; S = cdr(S) ) R = cons([car(T)[0]*car(S)[0],car(T)[1]+car(S)[1]],R); T = qsort(R,comp_by_second); T = map(first_element,T); Len = length(A)>length(B)?length(A):length(B); Len *= 2; L = sep_list(T,Len); B0 = L[0]; B1 = L[1]; R = nd_gr_trace(B0,V,0,-1,0); while ( B1 != [] ) { print(length(B1)); L = sep_list(B1,Len); B0 = L[0]; B1 = L[1]; R = nd_gr_trace(append(R,B0),V,0,-1,0|gbblock=[[0,length(R)]],nora=1); } return R; } def saturation(GNV,F,V) { G = GNV[0]; NV = GNV[1]; if ( Procs ) { Arg0 = ["nd_gr_trace", cons(NV*F-1,G),cons(NV,V),0,GBCheck,[[0,1],[0,length(V)]]]; Arg1 = ["nd_gr_trace", cons(NV*F-1,G),cons(NV,V),1,GBCheck,[[0,1],[0,length(V)]]]; G1 = competitive_exec(Procs,Arg0,Arg1); } else G1 = nd_gr_trace(cons(NV*F-1,G),cons(NV,V),SatHomo,GBCheck,[[0,1],[0,length(V)]]); return elimination(G1,V); } def sat(G,F,V) { if ( type(IsGB=getopt(isgb)) == -1 ) IsGB = 0; NV = ttttt; if ( Procs ) { Arg0 = ["nd_gr_trace", cons(NV*F-1,G),cons(NV,V),0,GBCheck,[[0,1],[0,length(V)]]]; Arg1 = ["nd_gr_trace", cons(NV*F-1,G),cons(NV,V),1,GBCheck,[[0,1],[0,length(V)]]]; G1 = competitive_exec(Procs,Arg0,Arg1); } else { B1 = append(G,[NV*F-1]); V1 = cons(NV,V); Ord1 = [[0,1],[0,length(V)]]; if ( IsGB ) G1 = nd_gr_trace(B1,V1,SatHomo,GBCheck,Ord1| gbblock=[[0,length(G)]]); else G1 = nd_gr_trace(B1,V1,SatHomo,GBCheck,Ord1); } return elimination(G1,V); } def satind(G,F,V) { NV = ttttt; N = length(V); B = append(G,[NV*F-1]); V1 = cons(NV,V); D = nd_gr_trace(B,V1,1,GBCheck,[[0,1],[0,N]] |nora=1,gentrace=1,gbblock=[[0,length(G)]]); G1 = D[0]; Len = length(G1); Deg = compute_deg(B,V1,NV,D); D1 = 0; R = []; M = length(B); for ( I = 0; I < Len; I++ ) { if ( !member(NV,vars(G1[I])) ) { for ( J = 1; J < M; J++ ) D1 = MAX(D1,Deg[I][J]); R = cons(G1[I],R); } } return [reverse(R),D1]; } def sat_ind(G,F,V) { NV = ttttt; F = p_nf(F,G,V,0); for ( I = 0, GI = G; ; I++ ) { G1 = colon(GI,F,V); if ( ideal_inclusion(G1,GI,V,0) ) { return [GI,I]; } else GI = G1; } } def colon(G,F,V) { if ( type(IsGB=getopt(isgb)) == -1 ) IsGB = 0; F = p_nf(F,G,V,0); if ( !F ) return [1]; if ( IsGB ) T = ideal_intersection(G,[F],V,0|gbblock=[[0,length(G)]]); else T = ideal_intersection(G,[F],V,0); return map(ptozp,map(sdiv,T,F)); } def ideal_colon(G,F,V) { G = nd_gr(G,V,0,0); for ( T = F, L = []; T != []; T = cdr(T) ) L = cons(colon(G,car(T),V|isgb=1),L); L = reverse(L); return ideal_list_intersection(L,V,0); } def ideal_sat(G,F,V) { G = nd_gr(G,V,0,0); L = mapat(sat,1,G,F,V); return ideal_list_intersection(L,V,0); } def ideal_inclusion(F,G,V,O) { if ( type(Mod=getopt(mod)) == -1 ) Mod = 0; if ( Mod ) { for ( T = F; T != []; T = cdr(T) ) if ( p_nf_mod(car(T),G,V,O,Mod) ) return 0; } else { for ( T = F; T != []; T = cdr(T) ) if ( p_nf(car(T),G,V,O) ) return 0; } return 1; } /* remove redundant components */ def qd_simp_comp(QP,V) { R = ltov(QP); N = length(R); for ( I = 0; I < N; I++ ) { if ( R[I] ) { QI = R[I][0]; PI = R[I][1]; for ( J = I+1; J < N; J++ ) if ( R[J] && gb_comp(PI,R[J][1]) ) { QI = ideal_intersection(QI,R[J][0],V,0); R[J] = 0; } R[I] = [QI,PI]; } } for ( I = N-1, S = []; I >= 0; I-- ) if ( R[I] ) S = cons(R[I],S); return S; } def qd_remove_redundant_comp(G,Iso,Emb,V,Ord) { IsoInt = ideal_list_intersection(map(first_element,Iso),V,Ord); Emb = qd_simp_comp(Emb,V); Emb = qsort(Emb); A = ltov(Emb); N = length(A); for ( I = 0; I < N; I++ ) { if ( !A[I] ) continue; for ( T = [], J = 0; J < N; J++ ) if ( J != I && A[J] ) T = cons(A[J][0],T); Int = ideal_list_intersection(T,V,Ord); Int = ideal_intersection(IsoInt,Int,V,Ord); if ( gb_comp(Int,G) ) A[I] = 0; } for ( T = [], I = 0; I < N; I++ ) if ( A[I] ) T = cons(A[I],T); return reverse(T); } def remove_redundant_comp(G,Iso,Emb,V,Ord) { IsoInt = ideal_list_intersection(Iso,V,Ord); A = ltov(Emb); N = length(A); for ( I = 0; I < N; I++ ) { if ( !A[I] ) continue; for ( J = I+1; J < N; J++ ) if ( A[J] && gb_comp(A[I],A[J]) ) A[J] = 0; } for ( I = 0; I < N; I++ ) { if ( !A[I] ) continue; for ( T = [], J = 0; J < N; J++ ) if ( J != I && A[J] ) T = cons(A[J],T); Int = ideal_list_intersection(cons(IsoInt,T),V,Ord); if ( gb_comp(Int,G) ) A[I] = 0; } for ( T = [], I = 0; I < N; I++ ) if ( A[I] ) T = cons(A[I],T); return reverse(T); } def remove_redundant_comp_first(G,P,V,Ord) { A = ltov(P); N = length(A); for ( I = 0; I < N; I++ ) { if ( !A[I] ) continue; for ( J = I+1; J < N; J++ ) if ( A[J] && gb_comp(A[I][0],A[J][0]) ) A[J] = 0; } for ( I = 0; I < N; I++ ) { if ( !A[I] ) continue; for ( T = [], J = 0; J < N; J++ ) if ( J != I && A[J] ) T = cons(A[J][0],T); Int = ideal_list_intersection(T,V,Ord); if ( gb_comp(Int,G) ) A[I] = 0; } for ( T = [], I = 0; I < N; I++ ) if ( A[I] ) T = cons(A[I],T); return reverse(T); } /* polynomial operations */ def ppart(F,V,Mod) { if ( !Mod ) G = nd_gr([F],[V],0,0); else G = dp_gr_mod_main([F],[V],0,Mod,0); return G[0]; } def sq(F) { if ( !F ) return 0; A = cdr(fctr(F)); for ( R = 1; A != []; A = cdr(A) ) R *= car(car(A)); return R; } def lcfactor(G,V,O) { O0 = dp_ord(); dp_ord(O); C = []; for ( T = G; T != []; T = cdr(T) ) { C1 = dp_hc(dp_ptod(car(T),V)); S = fctr(C1); for ( S = cdr(S); S != []; S = cdr(S) ) if ( !member(S[0][0],C) ) C = cons(S[0][0],C); } dp_ord(O0); return C; } /* Ti = [D,I,M,C] */ def compute_deg0(Ti,P,V,TV) { N = length(P[0]); Num = vector(N); for ( I = 0; I < N; I++ ) Num[I] = -1; for ( ; Ti != []; Ti = cdr(Ti) ) { Sj = car(Ti); Dj = Sj[0]; Ij =Sj[1]; Mj = deg(type(Sj[2])==9?dp_dtop(Sj[2],V):Sj[2],TV); Pj = P[Ij]; if ( Dj ) for ( I = 0; I < N; I++ ) if ( Pj[I] >= 0 ) { T = Mj+Pj[I]; Num[I] = MAX(Num[I],T); } } return Num; } def compute_deg(B,V,TV,Data) { GB = Data[0]; Homo = Data[1]; Trace = Data[2]; IntRed = Data[3]; Ind = Data[4]; DB = map(dp_ptod,B,V); if ( Homo ) { DB = map(dp_homo,DB); V0 = append(V,[hhh]); } else V0 = V; Perm = Trace[0]; Trace = cdr(Trace); for ( I = length(Perm)-1, T = Trace; T != []; T = cdr(T) ) if ( (J=car(T)[0]) > I ) I = J; N = I+1; N0 = length(B); P = vector(N); for ( T = Perm, I = 0; T != []; T = cdr(T), I++ ) { Pi = car(T); C = vector(N0); for ( J = 0; J < N0; J++ ) C[J] = -1; C[Pi[1]] = 0; P[Pi[0]] = C; } for ( T = Trace; T != []; T = cdr(T) ) { Ti = car(T); P[Ti[0]] = compute_deg0(Ti[1],P,V0,TV); } M = length(Ind); for ( T = IntRed; T != []; T = cdr(T) ) { Ti = car(T); P[Ti[0]] = compute_deg0(Ti[1],P,V,TV); } R = []; for ( J = 0; J < M; J++ ) { U = P[Ind[J]]; R = cons(U,R); } return reverse(R); } /* set theoretic functions */ def member(A,S) { for ( ; S != []; S = cdr(S) ) if ( car(S) == A ) return 1; return 0; } def elimination(G,V) { for ( R = [], T = G; T != []; T = cdr(T) ) if ( setminus(vars(car(T)),V) == [] ) R =cons(car(T),R); return R; } def setintersection(A,B) { for ( L = []; A != []; A = cdr(A) ) if ( member(car(A),B) ) L = cons(car(A),L); return L; } def setminus(A,B) { for ( T = reverse(A), R = []; T != []; T = cdr(T) ) { for ( S = B, M = car(T); S != []; S = cdr(S) ) if ( car(S) == M ) break; if ( S == [] ) R = cons(M,R); } return R; } def sep_list(L,N) { if ( length(L) <= N ) return [L,[]]; R = []; for ( T = L, I = 0; I < N; I++, T = cdr(T) ) R = cons(car(T),R); return [reverse(R),T]; } def first_element(L) { return L[0]; } def comp_tdeg(A,B) { DA = tdeg(A); DB = tdeg(B); if ( DA > DB ) return 1; else if ( DA < DB ) return -1; else return 0; } def tdeg(P) { dp_ord(0); return dp_td(dp_ptod(P,vars(P))); } def comp_by_ord(A,B) { if ( dp_ht(A) > dp_ht(B) ) return 1; else if ( dp_ht(A) < dp_ht(B) ) return -1; else return 0; } def comp_by_second(A,B) { if ( A[1] > B[1] ) return 1; else if ( A[1] < B[1] ) return -1; else return 0; } endmodule$ end$