References for the Holonomic Gradient Method (HGM) and the Holonomic Gradient Descent Method (HGD)

Papers and Tutorials

  1. M.Adamer, A.Lorincz, A.L.Sattelberger, B.Sturmfels, Algebraic Analysis of Rotation Data arxiv: 1912.00396
  2. Anna-Laura Sattelberger, Bernd Sturmfels, D-Modules and Holonomic Functions arxiv:1910.01395
  3. N.Takayama, L.Jiu, S.Kuriki, Y.Zhang, Computations of the Expected Euler Characteristic for the Largest Eigenvalue of a Real Wishart Matrix, jmva
  4. M.Harkonen, T.Sei, Y.Hirose, Holonomic extended least angle regression, arxiv:1809.08190
  5. S.Mano, Partitions, Hypergeometric Systems, and Dirichlet Processes in Statistics, JSS Research Series in Statistics, 2018.
  6. A.Kume, T.Sei, On the exact maximum likelihood inference of Fisher–Bingham distributions using an adjusted holonomic gradient method, doi (2018)
  7. Yoshihito Tachibana, Yoshiaki Goto, Tamio Koyama, Nobuki Takayama, Holonomic Gradient Method for Two Way Contingency Tables, arxiv:1803.04170
  8. F.H.Danufane, K.Ohara, N.Takayama, C.Siriteanu, Holonomic Gradient Method-Based CDF Evaluation for the Largest Eigenvalue of a Complex Noncentral Wishart Matrix (Title of the version 1: Holonomic Gradient Method for the Distribution Function of the Largest Root of Complex Non-central Wishart Matrices), arxiv:1707.02564
  9. T.Koyama, An integral formula for the powered sum of the independent, identically and normally distributed random variables, arxiv:1706.03989
  10. H.Hashiguchi, N.Takayama, A.Takemura, Distribution of Ratio of two Wishart Matrices and Evaluation of Cumulative Probability by Holonomic Gradient Method, arxiv:1610.09187
  11. R.Vidunas, A.Takemura, Differential relations for the largest root distribution of complex non-central Wishart matrices, arxiv:1609.01799
  12. S.Mano, The A-hypergeometric System Associated with the Rational Normal Curve and Exchangeable Structures, arxiv:1607.03569
  13. M.Noro, System of Partial Differential Equations for the Hypergeometric Function 1F1 of a Matrix Argument on Diagonal Regions, ACM DL
  14. Y.Goto, K.Matsumoto, Pfaffian equations and contiguity relations of the hypergeometric function of type (k+1,k+n+2) and their applications, arxiv:1602.01637
  15. T.Koyama, Holonomic gradient method for the probability content of a simplex region with a multivariate normal distribution, arxiv:1512.06564
  16. N.Takayama, Holonomic Gradient Method (in Japanese, survey), hgm-dic.pdf
  17. N.Takayama, S.Kuriki, A.Takemura, A-Hpergeometric Distributions and Newton Polytopes, arxiv:1510.02269
  18. G.Weyenberg, R.Yoshida, D.Howe, Normalizing Kernels in the Billera-Holmes-Vogtmann Treespace, arxiv:1506.00142
  19. C.Siriteanu, A.Takemura, C.Koutschan, S.Kuriki, D.St.P.Richards, H.Sin, Exact ZF Analysis and Computer-Algebra-Aided Evaluation in Rank-1 LoS Rician Fading, arxiv:1507.07056
  20. K.Ohara, N.Takayama, Pfaffian Systems of A-Hypergeometric Systems II --- Holonomic Gradient Method, arxiv:1505.02947
  21. T.Koyama, The Annihilating Ideal of the Fisher Integral, arxiv:1503.05261
  22. T.Koyama, A.Takemura, Holonomic gradient method for distribution function of a weighted sum of noncentral chi-square random variables, arxiv:1503.00378
  23. Y.Goto, Contiguity relations of Lauricella's F_D revisited, arxiv:1412.3256
  24. T.Koyama, H.Nakayama, K.Ohara, T.Sei, N.Takayama, Software Packages for Holonomic Gradient Method, Mathematial Software --- ICMS 2014, 4th International Conference, Proceedings. Edited by Hoon Hong and Chee Yap, Springer lecture notes in computer science 8592, 706--712. DOI
  25. N.Marumo, T.Oaku, A.Takemura, Properties of powers of functions satisfying second-order linear differential equations with applications to statistics, arxiv:1405.4451
  26. J.Hayakawa, A.Takemura, Estimation of exponential-polynomial distribution by holonomic gradient descent arxiv:1403.7852
  27. C.Siriteanu, A.Takemura, S.Kuriki, MIMO Zero-Forcing Detection Performance Evaluation by Holonomic Gradient Method arxiv:1403.3788
  28. T.Koyama, Holonomic Modules Associated with Multivariate Normal Probabilities of Polyhedra, arxiv:1311.6905
  29. T.Hibi, K.Nishiyama, N.Takayama, Pfaffian Systems of A-Hypergeometric Equations I, Bases of Twisted Cohomology Groups, arxiv:1212.6103 (major revision v2 of arxiv:1212.6103). Accepted version is at DOI
  30. Intro T.Hibi et al, Groebner Bases : Statistics and Software Systems , Springer, 2013.
  31. Intro Introduction to the Holonomic Gradient Method (movie), 2013. movie at youtube
  32. T.Sei, A.Kume, Calculating the Normalising Constant of the Bingham Distribution on the Sphere using the Holonomic Gradient Method, Statistics and Computing, 2013, DOI
  33. T.Koyama, A.Takemura, Calculation of Orthant Probabilities by the Holonomic Gradient Method, arxiv:1211.6822
  34. T. Koyama, H. Nakayama, K. Nishiyama, N. Takayama, Holonomic Rank of the Fisher-Bingham System of Differential Equations, Journal of Pure and Applied Algebra (online), DOI
  35. T. Koyama, H. Nakayama, K. Nishiyama, N. Takayama, Holonomic Gradient Descent for the Fisher-Bingham Distribution on the d-dimensional Sphere, Computational Statistics (2013) DOI
  36. Hiroki Hashiguchi, Yasuhide Numata, Nobuki Takayama, Akimichi Takemura, Holonomic gradient method for the distribution function of the largest root of a Wishart matrix, Journal of Multivariate Analysis, 117, (2013) 296-312, DOI
  37. Tomonari Sei, Hiroki Shibata, Akimichi Takemura, Katsuyoshi Ohara, Nobuki Takayama, Properties and applications of Fisher distribution on the rotation group, Journal of Multivariate Analysis, 116 (2013), 440--455, DOI
  38. T.Koyama, A Holonomic Ideal which Annihilates the Fisher-Bingham Integral, Funkcialaj Ekvacioj 56 (2013), 51--61. DOI
  39. Hiromasa Nakayama, Kenta Nishiyama, Masayuki Noro, Katsuyoshi Ohara, Tomonari Sei, Nobuki Takayama, Akimichi Takemura , Holonomic Gradient Descent and its Application to Fisher-Bingham Integral, Advances in Applied Mathematics 47 (2011), 639--658, DOI
Early papers related to HGM.
  1. H.Dwinwoodie, L.Matusevich, E. Mosteig, Transform methods for the hypergeometric distribution, Statistics and Computing 14 (2004), 287--297.

Three Steps of HGM

  1. Finding a holonomic system satisfied by the normalizing constant. We may use computational or theoretical methods to find it. Groebner basis and related methods are used.
  2. Finding an initial value vector for the holonomic system. This is equivalent to evaluating the normalizing constant and its derivatives at a point. This step is usually performed by a series expansion.
  3. Solving the holonomic system numerically. We use several methods in numerical analysis such as the Runge-Kutta method of solving ordinary differential equations and efficient solvers of systems of linear equations.

Software Packages for HGM

Programs to try examples of our papers

  1. d-dimensional Fisher-Bingham System
 $OpenXM: OpenXM/src/hgm/doc/ref-hgm.html,v 1.32 2020/08/24 23:24:27 takayama Exp $