% $OpenXM: OpenXM/src/kan96xx/Doc/hol.sm1,v 1.17 2004/05/13 05:52:53 takayama Exp $
%% hol.sm1, 1998, 11/8, 11/10, 11/14, 11/25, 1999, 5/18, 6/5. 2000, 6/8
%% rank, rrank, characteristic
%% This file is error clean.
/hol.version (2.990515) def
hol.version [(Version)] system_variable gt
{ [(This package hol.sm1 requires the latest version of kan/sm1) nl
(Please get it from http://www.math.kobe-u.ac.jp/KAN)
] cat
error
} { } ifelse
$hol.sm1, basic package for holonomic systems (C) N.Takayama, 2000, 06/08 $
message-quiet
/gb.warning 0 def
/gb.oxRingStructure [ ] def
/rank.v [(x) (y) (z)] def %% default value of v (variables).
/rank.ch [ ] def %% characteristic variety.
/rank.verbose 0 def
/rank {
/arg1 set
[/in-rank /aa /typev /setarg /f /v /vsss /vddd
/gg /wv /vd /vdweight /chv
/one
] pushVariables
[(CurrentRingp) (KanGBmessage)] pushEnv
[
/aa arg1 def
aa isArray { } { ( << array >> rank) error } ifelse
/setarg 0 def
aa { tag } map /typev set
typev [ ArrayP ] eq
{ /f aa 0 get def
/v rank.v def
/setarg 1 def
} { } ifelse
typev [ArrayP StringP] eq
{ /f aa 0 get def
/v [ aa 1 get to_records pop ] def
/setarg 1 def
} { } ifelse
typev [ArrayP ArrayP] eq
{ /f aa 0 get def
/v aa 1 get def
/setarg 1 def
} { } ifelse
setarg { } { (rank : Argument mismatch) error } ifelse
[(KanGBmessage) rank.verbose ] system_variable
f { toString } map /f set
v { @@@.Dsymbol 2 1 roll 2 cat_n 1 } map
/vddd set %% vddd = [(Dx) 1 (Dy) 1 (Dz) 1]
v { @@@.Dsymbol 2 1 roll 2 cat_n } map
/vd set %% vd = [(Dx) (Dy) (Dz)]
/vdweight
vd { [ 2 1 roll -1 ] } map %% vdweight=[[(Dx) -1] [(Dy) -1] [(Dz) -1]]
def
[v from_records
ring_of_differential_operators [vddd] weight_vector 0] define_ring
f { . dehomogenize } map /f set
[f] groebner_sugar 0 get /gg set
/wv vddd weightv def
gg { wv init } map /chv set %%obtained the characteristic variety.
/rank.ch chv def
chv { toString } map /chv set
[ v vd join from_records
ring_of_polynomials
[vddd] vdweight join weight_vector
0
] define_ring
[chv {.} map] groebner_sugar 0 get { init } map /chii set
/rank.chii chii def
rank.verbose { chii message } { } ifelse
v {[ 2 1 roll . (1).]} map /one set
%% [[(x). (1).] [(y). (1).] [(z). (1).]]
%% chii { one replace } map %% buggy code.
%% Arg of hilb should be a reduced GB.
[chii { one replace } map] groebner 0 get
vd hilb /arg1 set
] pop
popEnv
popVariables
arg1
} def
[(rank)
[( a rank b)
( array a; number b)
(Example 1 : )
$ [ [( (x Dx)^2 + ( y Dy)^2) ( x Dx y Dy -1)] (x,y)] rank :: $
(Example 2 : )
$[ [( (x^3-y^2) Dx + 3 x^2) ( (x^3-y^2) Dy - 2 y)] (x,y)] rank :: $
]
] putUsages
(rank ) messagen-quiet
/characteristic.verbose 0 def
/characteristic.v [(x) (y) (z)] def
/characteristic.ch [ ] def
/ch { characteristic } def
/characteristic {
/arg1 set
[/in-rank /aa /typev /setarg /f /v /vsss /vddd
/gg /wv /vd /chv
/one
] pushVariables
[(CurrentRingp) (KanGBmessage)] pushEnv
[
/aa arg1 def
aa isArray { } { ( << array >> characteristic) error } ifelse
/setarg 0 def
aa { tag } map /typev set
typev [ ArrayP ] eq
{ /f aa 0 get def
/v characteristic.v def
/setarg 1 def
} { } ifelse
typev [ArrayP StringP] eq
{ /f aa 0 get def
/v [ aa 1 get to_records pop ] def
/setarg 1 def
} { } ifelse
typev [ArrayP ArrayP] eq
{ /f aa 0 get def
/v aa 1 get def
/setarg 1 def
} { } ifelse
setarg { } { (rank : Argument mismatch) error } ifelse
[(KanGBmessage) characteristic.verbose ] system_variable
f { toString } map /f set
v { @@@.Dsymbol 2 1 roll 2 cat_n 1 } map
/vddd set %% vddd = [(Dx) 1 (Dy) 1 (Dz) 1]
v { @@@.Dsymbol 2 1 roll 2 cat_n } map
/vd set %% vd = [(Dx) (Dy) (Dz)]
[v from_records
ring_of_differential_operators [vddd] weight_vector 0] define_ring
f { . dehomogenize } map /f set
[f] groebner_sugar 0 get /gg set
/wv vddd weightv def
gg { wv init } map /chv set
/characteristic.ch [chv] def
%% gg { wv init toString} map /chv set %%obtained the characteristic variety.
%% /characteristic.ch chv def
%% [ v vd join from_records
%% ring_of_polynomials
%% [vddd] weight_vector
%% 0
%% ] define_ring
%% [chv {.} map] groebner_sugar 0 get /characteristic.ch set
characteristic.ch /arg1 set
] pop
popEnv
popVariables
arg1
} def
[(characteristic)
[( a characteristic b)
( array a; number b)
(b is the generator of the characteristic variety of a.)
(For the algorithm, see Japan J. of Industrial and Applied Math., 1994, 485--497.)
(Example 1 : )
$ [ [( (x Dx)^2 + ( y Dy)^2) ( x Dx y Dy -1)] (x,y)] characteristic :: $
(Example 2 : )
$[ [( (x^3-y^2) Dx + 3 x^2) ( (x^3-y^2) Dy - 2 y)] (x,y)] characteristic :: $
]
] putUsages
(characteristic ) messagen-quiet
[(ch)
[(ch is the abbreviation of characteristic.)
( a ch b)
( array a; number b)
(b is the generator of the characteristic variety of a.)
(For the algorithm, see, Japan J. of Industrial and Applied Math., 1994, 485--497.)
(Example 1 : )
$ [ [( (x Dx)^2 + ( y Dy)^2) ( x Dx y Dy -1)] (x,y)] ch :: $
(Example 2 : )
$[ [( (x^3-y^2) Dx + 3 x^2) ( (x^3-y^2) Dy - 2 y)] (x,y)] ch :: $
]
] putUsages
(ch ) messagen-quiet
%%%% developing rrank.sm1
/rrank.v [(x) (y) (z)] def %% default value of v (variables).
/rrank.init [ ] def %% initial ideal.
/rrank.verbose 0 def
/rrank {
/arg1 set
[/in-rrank /aa /typev /setarg /f /v /vsss /vddd
/gg /wv /vd /vdweight
/one /i /chv
] pushVariables
[(CurrentRingp) (KanGBmessage)] pushEnv
[
/aa arg1 def
aa isArray { } { ( << array >> rrank) error } ifelse
/setarg 0 def
aa { tag } map /typev set
typev [ ArrayP ] eq
{ /f aa 0 get def
/v rrank.v def
/setarg 1 def
} { } ifelse
typev [ArrayP StringP] eq
{ /f aa 0 get def
/v [ aa 1 get to_records pop ] def
/setarg 1 def
} { } ifelse
typev [ArrayP ArrayP] eq
{ /f aa 0 get def
/v aa 1 get def
/setarg 1 def
} { } ifelse
setarg { } { (rrank : Argument mismatch) error } ifelse
[(KanGBmessage) rrank.verbose ] system_variable
f { toString } map /f set
v { @@@.Dsymbol 2 1 roll 2 cat_n 1 } map
v { @@@.Dsymbol 2 1 roll 2 cat_n } map
/vd set %% vd = [(Dx) (Dy) (Dz)] , v = [(x) (y) (z)]
/vdweight
[ 0 1 v length 1 sub { /i set v i get << 0 i sub >>
vd i get << i >> } for ]
def
rrank.verbose { vdweight message } { } ifelse
[v from_records
ring_of_differential_operators [vdweight] weight_vector 0] define_ring
f { . dehomogenize homogenize } map /f set
[f] groebner 0 get {dehomogenize} map /gg set
/wv vdweight weightv def
gg { wv init } map /rrank.init set %%obtained the initial ideal
rrank.init {toString} map /chv set
/arg1 [chv v] rank def
] pop
popEnv
popVariables
arg1
} def
[(rrank)
[( a rrank b)
( array a; number b)
(It computes the holonomic rank for regular holonomic system.)
(For the algorithm, see Grobner deformations of hypergeometric differential equations, 1999, Springer.)
(Chapter 2.)
(Example 1 : )
$ [ [( (x Dx)^2 + ( y Dy)^2) ( x Dx y Dy -1)] (x,y)] rrank :: $
]
] putUsages
(rrank ) messagen-quiet
/gb.v 1 def
/gb.verbose 0 def
/gb.options [ ] def
/gb.characteristic 0 def
/gb.homogenized 0 def
/gb.autoHomogenize 1 def
/gb {
/arg1 set
[/in-gb /aa /typev /setarg /f /v
/gg /wv /termorder /vec /ans /rr /mm
/degreeShift /env2
] pushVariables
[(CurrentRingp) (KanGBmessage)] pushEnv
[
/aa arg1 def
aa isArray { } { ( << array >> gb) error } ifelse
/setarg 0 def
/wv 0 def
/degreeShift 0 def
aa { tag } map /typev set
typev [ ArrayP ] eq
{ /f aa 0 get def
/v gb.v def
/setarg 1 def
} { } ifelse
typev [ArrayP StringP] eq
{ /f aa 0 get def
/v aa 1 get def
/setarg 1 def
} { } ifelse
typev [ArrayP RingP] eq
{ /f aa 0 get def
/v aa 1 get def
/setarg 1 def
} { } ifelse
typev [ArrayP ArrayP] eq
{ /f aa 0 get def
/v aa 1 get from_records def
/setarg 1 def
} { } ifelse
typev [ArrayP StringP ArrayP] eq
{ /f aa 0 get def
/v aa 1 get def
/wv aa 2 get def
/setarg 1 def
} { } ifelse
typev [ArrayP ArrayP ArrayP] eq
{ /f aa 0 get def
/v aa 1 get from_records def
/wv aa 2 get def
/setarg 1 def
} { } ifelse
typev [ArrayP StringP ArrayP ArrayP] eq
{ /f aa 0 get def
/v aa 1 get def
/wv aa 2 get def
/degreeShift aa 3 get def
/setarg 1 def
} { } ifelse
typev [ArrayP ArrayP ArrayP ArrayP] eq
{ /f aa 0 get def
/v aa 1 get from_records def
/wv aa 2 get def
/degreeShift aa 3 get def
/setarg 1 def
} { } ifelse
/env1 getOptions def
setarg { } { (gb : Argument mismatch) error } ifelse
[(KanGBmessage) gb.verbose ] system_variable
%%% Start of the preprocess
v tag RingP eq {
/rr v def
}{
f getRing /rr set
} ifelse
%% To the normal form : matrix expression.
f gb.toMatrixOfString /f set
/mm gb.itWasMatrix def
rr tag 0 eq
v isInteger not
or {
%% Define our own ring
v isInteger {
(Error in gb: Specify variables) error
} { } ifelse
wv isInteger {
[v ring_of_differential_operators
gb.characteristic] define_ring
/termorder 1 def
}{
degreeShift isInteger {
[v ring_of_differential_operators
wv weight_vector
gb.characteristic] define_ring
wv gb.isTermOrder /termorder set
}{
[v ring_of_differential_operators
wv weight_vector
gb.characteristic
[(degreeShift) degreeShift]
] define_ring
wv gb.isTermOrder /termorder set
} ifelse
} ifelse
} {
%% Use the ring structre given by the input.
rr ring_def
/wv rr gb.getWeight def
wv gb.isTermOrder /termorder set
} ifelse
%%% Enf of the preprocess
termorder {
/gb.homogenized 0 def
}{
/gb.homogenized 1 def
} ifelse
gb.verbose { (gb.options = ) messagen gb.options message } { } ifelse
termorder {
f { {,,, dehomogenize} map } map /f set
[f gb.options] groebner_sugar 0 get /gg set
}{
f { {,,, dehomogenize} map} map /f set
gb.autoHomogenize {
f fromVectors { homogenize } map /f set
} { } ifelse
[f gb.options] groebner 0 get /gg set
}ifelse
wv isInteger {
/ans [gg gg {init} map] def
}{
/ans [gg gg {wv 0 get weightv init} map] def
}ifelse
%% Postprocess : recover the matrix expression.
mm {
ans { /tmp set [mm tmp] toVectors } map
/ans set
}{ }
ifelse
ans getRing (oxRingStructure) dc /gb.oxRingStructure set
%%
env1 restoreOptions %% degreeShift changes "grade"
/arg1 ans def
] pop
popEnv
popVariables
arg1
} def
(gb ) messagen-quiet
/pgb {
/arg1 set
[/in-pgb /aa /typev /setarg /f /v
/gg /wv /termorder /vec /ans /rr /mm
] pushVariables
[(CurrentRingp) (KanGBmessage) (UseCriterion1)] pushEnv
[
/aa arg1 def
aa isArray { } { (<< array >> pgb) error } ifelse
/setarg 0 def
/wv 0 def
aa { tag } map /typev set
typev [ ArrayP ] eq
{ /f aa 0 get def
/v gb.v def
/setarg 1 def
} { } ifelse
typev [ArrayP StringP] eq
{ /f aa 0 get def
/v aa 1 get def
/setarg 1 def
} { } ifelse
typev [ArrayP ArrayP] eq
{ /f aa 0 get def
/v aa 1 get from_records def
/setarg 1 def
} { } ifelse
typev [ArrayP StringP ArrayP] eq
{ /f aa 0 get def
/v aa 1 get def
/wv aa 2 get def
/setarg 1 def
} { } ifelse
typev [ArrayP ArrayP ArrayP] eq
{ /f aa 0 get def
/v aa 1 get from_records def
/wv aa 2 get def
/setarg 1 def
} { } ifelse
setarg { } { (pgb : Argument mismatch) error } ifelse
[(KanGBmessage) gb.verbose ] system_variable
%%% Start of the preprocess
f getRing /rr set
%% To the normal form : matrix expression.
f gb.toMatrixOfString /f set
/mm gb.itWasMatrix def
rr tag 0 eq {
%% Define our own ring
v isInteger {
(Error in pgb: Specify variables) error
} { } ifelse
wv isInteger {
[v ring_of_polynomials
gb.characteristic] define_ring
/termorder 1 def
}{
[v ring_of_polynomials
wv weight_vector
gb.characteristic] define_ring
wv gb.isTermOrder /termorder set
} ifelse
} {
%% Use the ring structre given by the input.
v isInteger not {
gb.warning {
(Warning : the given ring definition is not used.) message
} { } ifelse
} { } ifelse
rr ring_def
/wv rr gb.getWeight def
wv gb.isTermOrder /termorder set
} ifelse
%%% Enf of the preprocess
gb.verbose { (gb.options = ) messagen gb.options message } { } ifelse
termorder {
f { {. dehomogenize} map } map /f set
[(UseCriterion1) 1] system_variable
[f gb.options] groebner_sugar 0 get /gg set
[(UseCriterion1) 0] system_variable
}{
f { {. dehomogenize} map} map /f set
f fromVectors { homogenize } map /f set
[(UseCriterion1) 1] system_variable
[f gb.options] groebner 0 get /gg set
[(UseCriterion1) 0] system_variable
}ifelse
wv isInteger {
/ans [gg gg {init} map] def
}{
/ans [gg gg {wv 0 get weightv init} map] def
}ifelse
%% Postprocess : recover the matrix expression.
mm {
ans { /tmp set [mm tmp] toVectors } map
/ans set
}{ }
ifelse
%%
/arg1 ans def
] pop
popEnv
popVariables
arg1
} def
/pgb.old {
/arg1 set
[/in-pgb /aa /typev /setarg /f /v
/gg /wv /termorder /vec /ans
] pushVariables
[(CurrentRingp) (KanGBmessage) (UseCriterion1)] pushEnv
[
/aa arg1 def
aa isArray { } { (array pgb) message (pgb) usage error } ifelse
/setarg 0 def
/wv 0 def
aa { tag } map /typev set
typev [ ArrayP ] eq
{ /f aa 0 get def
/v gb.v def
/setarg 1 def
} { } ifelse
typev [ArrayP StringP] eq
{ /f aa 0 get def
/v aa 1 get def
/setarg 1 def
} { } ifelse
typev [ArrayP ArrayP] eq
{ /f aa 0 get def
/v aa 1 get from_records def
/setarg 1 def
} { } ifelse
typev [ArrayP StringP ArrayP] eq
{ /f aa 0 get def
/v aa 1 get def
/wv aa 2 get def
/setarg 1 def
} { } ifelse
typev [ArrayP ArrayP ArrayP] eq
{ /f aa 0 get def
/v aa 1 get from_records def
/wv aa 2 get def
/setarg 1 def
} { } ifelse
setarg { } { (pgb : Argument mismatch) message error } ifelse
[(KanGBmessage) gb.verbose ] system_variable
%% Input must not be vectors.
f { toString } map /f set
wv isInteger {
[v ring_of_polynomials
0] define_ring
/termorder 1 def
}{
[v ring_of_polynomials
wv weight_vector
0] define_ring
wv gb.isTermOrder /termorder set
} ifelse
termorder {
f { . dehomogenize } map /f set
[(UseCriterion1) 1] system_variable
[f] groebner_sugar 0 get /gg set
[(UseCriterion1) 0] system_variable
}{
f { . dehomogenize homogenize} map /f set
[(UseCriterion1) 1] system_variable
[f] groebner 0 get /gg set
[(UseCriterion1) 0] system_variable
}ifelse
wv isInteger {
/ans [gg gg {init} map] def
}{
/ans [gg gg {wv 0 get weightv init} map] def
}ifelse
/arg1 ans def
] pop
popEnv
popVariables
arg1
} def
(pgb ) messagen-quiet
/gb.toMatrixOfString {
/arg1 set
[/in-gb.toMatrixOfString /ff /aa /ans] pushVariables
[
/aa arg1 def
aa length 0 eq { /ans [ ] def /gb.toMatrixOfString.LLL goto }{ } ifelse
aa 0 get isArray {
/gb.itWasMatrix aa 0 get length def
}{
/gb.itWasMatrix 0 def
} ifelse
aa {
/ff set
ff isArray {
ff {toString} map /ff set
}{
[ff toString] /ff set
} ifelse
ff
} map /ans set
/gb.toMatrixOfString.LLL
/arg1 ans def
] pop
popVariables
arg1
} def
[(gb.toMatrixOfString)
[(It translates given input into a matrix form which is a data structure)
(for computations of kernel, image, cokernel, etc.)
(gb.itWasMatrix is set to the length of the input vector.)
$Example 1: $
$ [ (x). (y).] gb.toMatrixOfString ==> [[(x)] [(y)]] $
$ gb.itWasMatrix is 0.$
$Example 2: $
$ [ [(x). (1).] [(y). (0).]] gb.toMatrixOfString ==> [ [(x) (1)] [(y) (0)]] $
$ gb.itWasMatrix is 2.$
]] putUsages
/gb.toMatrixOfPoly {
/arg1 set
[/in-gb.toMatrixOfPoly /ff /aa /ans] pushVariables
[
/aa arg1 def
aa length 0 eq { /ans [ ] def /gb.toMatrixOfPoly.LLL goto }{ } ifelse
aa 0 get isArray {
/gb.itWasMatrix aa 0 get length def
}{
/gb.itWasMatrix 0 def
} ifelse
aa {
/ff set
ff isArray {
}{
[ff] /ff set
} ifelse
ff
} map /ans set
/gb.toMatrixOfPoly.LLL
/arg1 ans def
] pop
popVariables
arg1
} def
[(gb.toMatrixOfPoly)
[(It translates given input into a matrix form which is a data structure)
(for computations of kernel, image, cokernel, etc.)
(gb.itWasMatrix is set to the length of the input vector.)
$Example 1: $
$ [ (x). (y).] gb.toMatrixOfPoly ==> [[(x)] [(y)]] $
$ gb.itWasMatrix is 0.$
$Example 2: $
$ [ [(x). (1).] [(y). (0).]] gb.toMatrixOfPoly ==> [ [(x) (1)] [(y) (0)]] $
$ gb.itWasMatrix is 2.$
]] putUsages
/gb.getWeight {
/arg1 set
[/in-gb.getWeight /rr /ww /vv /ans /nn /ii] pushVariables
[(CurrentRingp)] pushEnv
[
/rr arg1 def
rr ring_def
getVariableNames /vv set
[(orderMatrix)] system_variable 0 get /ww set
/nn vv length 1 sub def
[0 1 nn {
/ii set
ww ii get 0 eq {
} {
vv ii get
ww ii get
} ifelse
} for
] /ans set
/arg1 [ans] def
] pop
popEnv
popVariables
arg1
} def
[(gb.getWeight)
[(ring gb.getWeight wv)
(It gets the weight vector field of the ring ring.)
]] putUsages
/gb.isTermOrder {
/arg1 set
[/in-gb.isTermOrder /vv /ww /yes /i /j] pushVariables
[
/vv arg1 def
/yes 1 def
0 1 vv length 1 sub {
/i set
/ww vv i get def
0 1 ww length 1 sub {
/j set
ww j get isInteger {
ww j get 0 lt { /yes 0 def } { } ifelse
}{ } ifelse
}for
}for
/arg1 yes def
] pop
popVariables
arg1
} def
[(gb)
[(a gb b)
(array a; array b;)
(b : [g ii]; array g; array in; g is a Grobner basis of f)
( in the ring of differential operators.)
$ ii is the initial ideal in case of w is given or <> belongs$
$ to a ring. In the other cases, it returns the initial monominal.$
(a : [f ]; array f; f is a set of generators of an ideal in a ring.)
(a : [f v]; array f; string v; v is the variables. )
(a : [f v w]; array f; string v; array of array w; w is the weight matirx.)
(a : [f v w ds]; array f; string v; array of array w; w is the weight matirx.)
( array ds; ds is the degree shift )
( )
(gb.authoHomogenize 1 [default])
(gb.oxRingStructure )
( )
$Example 1: [ [( (x Dx)^2 + (y Dy)^2 -1) ( x y Dx Dy -1)] (x,y) $
$ [ [ (Dx) 1 ] ] ] gb pmat ; $
(Example 2: )
(To put h=1, type in, e.g., )
$ [ [(2 x Dx + 3 y Dy+6) (2 y Dx + 3 x^2 Dy)] (x,y) $
$ [[(x) -1 (Dx) 1 (y) -1 (Dy) 1]]] gb /gg set gg dehomogenize pmat ;$
( )
$Example 3: [ [( (x Dx)^2 + (y Dy)^2 -1) ( x y Dx Dy -1)] (x,y) $
$ [ [ (Dx) 1 (Dy) 1] ] ] gb pmat ; $
( )
$Example 4: [[ [(x^2) (y+x)] [(x+y) (y^3)] [(2 x^2+x y) (y+x+x y^3)]] (x,y) $
$ [ [ (x) -1 (y) -1] ] ] gb pmat ; $
( )
$Example 5: [[ [(x^2) (y+x)] [(x+y) (y^3)] [(2 x^2+x y) (y+x+x y^3)]] (x,y) $
$ [ [ (x) -1 (y) -1] ] [[0 1] [-3 1] ] ] gb pmat ; $
( )
(cf. gb, groebner, groebner_sugar, syz. )
]] putUsages
[(pgb)
[(a pgb b)
(array a; array b;)
(b : [g ii]; array g; array in; g is a Grobner basis of f)
( in the ring of polynomials.)
$ ii is the initial ideal in case of w is given or <>belongs$
$ to a ring. In the other cases, it returns the initial monominal.$
(a : [f ]; array f; f is a set of generators of an ideal in a ring.)
(a : [f v]; array f; string v; v is the variables.)
(a : [f v w]; array f; string v; array of array w; w is the weight matirx.)
$Example 1: [(x,y) ring_of_polynomials 0] define_ring $
$ [ [(x^2+y^2-4). (x y -1).] ] pgb :: $
$Example 2: [ [(x^2+y^2) (x y)] (x,y) [ [(x) -1 (y) -1] ] ] pgb :: $
(cf. gb, groebner, groebner_sugar, syz. )
]] putUsages
%/syz.v 1 def
/syz.v 1 def
/syz.verbose 0 def
/syz {
/arg1 set
[/in-syz /aa /typev /setarg /f /v
/gg /wv /termorder /vec /ans /ggall /vectorInput /vsize /gtmp /gtmp2
/rr /mm
] pushVariables
[(CurrentRingp) (KanGBmessage)] pushEnv
[
/aa arg1 def
aa isArray { } { (<< array >> syz) error } ifelse
/setarg 0 def
/wv 0 def
aa { tag } map /typev set
typev [ ArrayP ] eq
{ /f aa 0 get def
/v syz.v def
/setarg 1 def
} { } ifelse
typev [ArrayP StringP] eq
{ /f aa 0 get def
/v aa 1 get def
/setarg 1 def
} { } ifelse
typev [ArrayP RingP] eq
{ /f aa 0 get def
/v aa 1 get def
/setarg 1 def
} { } ifelse
typev [ArrayP ArrayP] eq
{ /f aa 0 get def
/v aa 1 get from_records def
/setarg 1 def
} { } ifelse
typev [ArrayP StringP ArrayP] eq
{ /f aa 0 get def
/v aa 1 get def
/wv aa 2 get def
/setarg 1 def
} { } ifelse
typev [ArrayP RingP ArrayP] eq
{ /f aa 0 get def
/v aa 1 get def
/wv aa 2 get def
/setarg 1 def
} { } ifelse
typev [ArrayP ArrayP ArrayP] eq
{ /f aa 0 get def
/v aa 1 get from_records def
/wv aa 2 get def
/setarg 1 def
} { } ifelse
setarg { } { (syz : Argument mismatch) error } ifelse
[(KanGBmessage) syz.verbose ] system_variable
%%% Start of the preprocess
v tag RingP eq {
/rr v def
}{
f getRing /rr set
} ifelse
%% To the normal form : matrix expression.
f gb.toMatrixOfString /f set
/mm gb.itWasMatrix def
mm 0 gt {
/vectorInput 1 def
}{
/vectorInput 1 def
} ifelse
rr tag 0 eq {
%% Define our own ring
v isInteger {
(Error in syz: Specify variables) error
} { } ifelse
wv isInteger {
[v ring_of_differential_operators
0] define_ring
/termorder 1 def
}{
[v ring_of_differential_operators
wv weight_vector
0] define_ring
wv gb.isTermOrder /termorder set
} ifelse
}{
%% Use the ring structre given by the input.
v isInteger not {
gb.warning {
(Warning : the given ring definition is not used.) message
} { } ifelse
} { } ifelse
rr ring_def
/wv rr gb.getWeight def
wv gb.isTermOrder /termorder set
} ifelse
%%% Enf of the preprocess
termorder {
f { {. dehomogenize} map } map /f set
[f [(needBack) (needSyz)]] groebner_sugar /ggall set
ggall 2 get /gg set
}{
f { {. dehomogenize } map homogenize } map /f set
[f [(needBack) (needSyz)]] groebner /ggall set
ggall 2 get /gg set
}ifelse
vectorInput {
/vsize f 0 get length def %% input vector size.
/gtmp ggall 0 get def
[vsize gtmp] toVectors /gtmp set
ggall 0 gtmp put
}{ } ifelse
/arg1 [gg dehomogenize ggall] def
] pop
popEnv
popVariables
arg1
} def
(syz ) messagen-quiet
[(syz)
[(a syz [b c])
(array a; array b; array c)
(b is a set of generators of the syzygies of f.)
(c = [gb, backward transformation, syzygy without dehomogenization].)
(See groebner.)
(a : [f ]; array f; f is a set of generators of an ideal in a ring.)
(a : [f v]; array f; string v; v is the variables.)
(a : [f v w]; array f; string v; array of array w; w is the weight matirx.)
( v may be a ring object. )
$Example 1: [(x,y) ring_of_polynomials 0] define_ring $
$ [ [(x^2+y^2-4). (x y -1).] ] syz :: $
$Example 2: [ [(x^2+y^2) (x y)] (x,y) [ [(x) -1 (y) -1] ] ] syz :: $
$Example 3: [ [( (x Dx)^2 + (y Dy)^2 -1) ( x y Dx Dy -1)] (x,y) $
$ [ [ (Dx) 1 ] ] ] syz pmat ; $
$Example 4: [ [(2 x Dx + 3 y Dy+6) (2 y Dx + 3 x^2 Dy)] (x,y) $
$ [[(x) -1 (Dx) 1 (y) -1 (Dy) 1]]] syz pmat ;$
$Example 5: [ [ [(x^2) (y+x)] [(x+y) (y^3)] [(2 x^2+x y) (y+x+x y^3)]] $
$ (x,y) ] syz pmat ;$
$Example 6: [ [ [(x^2) (y+x)] [(x+y) (y^3)] [(2 x^2+x y) (y+x+x y^3)]] $
$ (x,y) [[(x) -1 (y) -2]] ] syz pmat ;$
$Example 7: [ [ [(0) (0)] [(0) (0)] [(x) (y)]] $
$ [(x) (y)]] syz pmat ;$
]] putUsages
%%%%%%%%%%%%%%%%%% package fs %%%%%%%%%%%%%%%%%%%%%%%
[(genericAnn)
[ (f [s v1 v2 ... vn] genericAnn [L1 ... Lm])
(L1, ..., Lm are annihilating ideal for f^s.)
(f is a polynomial of v1, ..., vn)
( | f, s, v1, ..., vn ; L1, ..., Lm )
$Example: (x^3+y^3+z^3) [(s) (x) (y) (z)] genericAnn$
]
] putUsages ( genericAnn ) messagen-quiet
/fs.verbose 0 def
/genericAnn {
/arg2 set /arg1 set
[/in-genericAnn /f /vlist /s /vvv /nnn /rrr
/v1 /ops /ggg /ggg0
] pushVariables
[(CurrentRingp) (KanGBmessage)] pushEnv
[
/f arg1 def /vlist arg2 def
f toString /f set
vlist { toString } map /vlist set
[(KanGBmessage) fs.verbose] system_variable
/s vlist 0 get def
/vvv (_u,_v,_t,) vlist rest { (,) 2 cat_n } map aload length /nnn set
s nnn 2 add cat_n def
fs.verbose { vvv message } { }ifelse
[vvv ring_of_differential_operators
[[(_u) 1 (_v) 1]] weight_vector 0] define_ring /rrr set
[ (_u*_t). f . sub (_u*_v-1). ]
vlist rest { /v1 set
%%D-clean f . (D) v1 2 cat_n . 1 diff0 (_v*D_t). mul
f . @@@.Dsymbol v1 2 cat_n . 1 diff0 [(_v*) @@@.Dsymbol (_t)] cat . mul
@@@.Dsymbol v1 2 cat_n . add } map
join
/ops set
ops {[[(h). (1).]] replace } map /ops set
fs.verbose { ops message } { }ifelse
[ops] groebner_sugar 0 get /ggg0 set
fs.verbose { ggg0 message } { } ifelse
ggg0 [(_u) (_v)] eliminatev
%%D-clean { [(_t).] [ (D_t).] [s .] distraction
{ [(_t).] [ [@@@.Dsymbol (_t)] cat .] [s .] distraction
[[s . << (0). s . sub (1). sub >>]] replace
} map /arg1 set
] pop
popEnv
popVariables
arg1
} def
%% Find differential equations for f^(m), r0 the minimal integral root.
[(annfs)
[( [ f v m r0] annfs g )
(It returns the annihilating ideal of f^m where r0 must be smaller)
(or equal to the minimal integral root of the b-function.)
(Or, it returns the annihilating ideal of f^r0, r0 and the b-function)
(where r0 is the minial integral root of b.)
(For the algorithm, see J. Pure and Applied Algebra 117&118(1997), 495--518.)
(Example 1: [(x^2+y^2+z^2+t^2) (x,y,z,t) -1 -2] annfs :: )
$ It returns the annihilating ideal of (x^2+y^2+z^2+t^2)^(-1).$
(Example 2: [(x^2+y^2+z^2+t^2) (x,y,z,t)] annfs :: )
$ It returns the annihilating ideal of f^r0 and [r0, b-function]$
$ where r0 is the minimal integral root of the b-function.$
(Example 3: [(x^2+y^2+z^2) (x,y,z) -1 -1] annfs :: )
(Example 4: [(x^3+y^3+z^3) (x,y,z)] annfs :: )
(Example 5: [((x1+x2+x3)(x1 x2 + x2 x3 + x1 x3) - t x1 x2 x3 ) )
( (t,x1,x2,x3) -1 -2] annfs :: )
( Note that the example 4 uses huge memory space.)
]] putUsages
( annfs ) messagen-quiet
/annfs.verbose fs.verbose def
/annfs.v [(x) (y) (z)] def
/annfs.s (_s) def
%% The first variable must be s.
/annfs {
/arg1 set
[/in-annfs /aa /typev /setarg /v /m /r0 /gg /ss /fs /gg2
/ans /vtmp /w2 /velim /bbb /rrr /r0
] pushVariables
[(CurrentRingp) (KanGBmessage)] pushEnv
[
/aa arg1 def
aa isArray { } { ( << array >> annfs) error } ifelse
/setarg 0 def
aa { tag } map /typev set
/r0 [ ] def
/m [ ] def
/v annfs.v def
aa 0 << aa 0 get toString >> put
typev [ StringP ] eq
{ /f aa 0 get def
/setarg 1 def
} { } ifelse
typev [StringP StringP] eq
{ /f aa 0 get def
/v [ aa 1 get to_records pop ] def
/setarg 1 def
} { } ifelse
typev [StringP ArrayP] eq
{ /f aa 0 get def
/v aa 1 get def
/setarg 1 def
} { } ifelse
typev [StringP ArrayP IntegerP IntegerP] eq
{ /f aa 0 get def
/v aa 1 get def
/m aa 2 get def
/r0 aa 3 get def
/setarg 1 def
} { } ifelse
typev [StringP StringP IntegerP IntegerP] eq
{ /f aa 0 get def
/v [ aa 1 get to_records pop ] def
/m aa 2 get def
/r0 aa 3 get def
/setarg 1 def
} { } ifelse
setarg 1 eq { } { (annfs : wrong argument) error } ifelse
[annfs.s] v join /v set
/ss v 0 get def
annfs.verbose {
(f, v, s, f^{m}, m+r0 = ) messagen
[ f (, ) v (, ) ss (, )
(f^) m (,) m (+) r0 ] {messagen} map ( ) message
} { } ifelse
f v genericAnn /fs set
annfs.verbose {
(genericAnn is ) messagen fs message
} { } ifelse
[(KanGBmessage) annfs.verbose] system_variable
m isArray {
%% Now, let us find the b-function. /vtmp /w2 /velim /bbb /rrr /r0
v rest { /vtmp set vtmp @@@.Dsymbol vtmp 2 cat_n } map /velim set
velim { 1 } map /w2 set
annfs.verbose { w2 message } { } ifelse
[v from_records ring_of_differential_operators
[w2] weight_vector 0] define_ring
[ fs { toString . } map [ f toString . ] join ]
groebner_sugar 0 get velim eliminatev 0 get /bbb set
[[(s) annfs.s] from_records ring_of_polynomials 0] define_ring
bbb toString . [[annfs.s . (s).]] replace /bbb set
annfs.verbose { bbb message } { } ifelse
bbb findIntegralRoots /rrr set
rrr 0 get /r0 set %% minimal integral root.
annfs.verbose { rrr message } { } ifelse
fs 0 get (ring) dc ring_def
fs { [[annfs.s . r0 toString .]] replace } map /ans set
/ans [ans [r0 bbb]] def
/annfs.label1 goto
} { } ifelse
m 0 ge {
(annfs works only for getting annihilating ideal for f^(negative))
error
} { } ifelse
r0 isArray {
[(Need to compute the minimal root of b-function) nl
(It has not been implemented.) ] cat
error
} { } ifelse
[v from_records ring_of_differential_operators 0] define_ring
fs {toString . dehomogenize [[ss . r0 (poly) dc]] replace}
map /gg set
annfs.verbose { gg message } { } ifelse
[ [f . << m r0 sub >> npower ] gg join
[(needBack) (needSyz)]] groebner_sugar 2 get /gg2 set
gg2 { 0 get } map /ans set
/ans ans { dup (0). eq {pop} { } ifelse } map def
/annfs.label1
/arg1 ans def
] pop
popEnv
popVariables
arg1
} def
/genericAnnWithL.s (s) def
/annfs.verify 0 def
/genericAnnWithL {
/arg1 set
[/in-genericAnnWithL /aa /typev /setarg /v /m /r0 /gg /ss /fs /gg2
/ans /vtmp /w2 /velim /bbb /rrr /r0 /myL /mygb /jj
] pushVariables
[(CurrentRingp) (KanGBmessage) (Homogenize)] pushEnv
[
/aa arg1 def
aa isArray { } { ( << array >> annfs) error } ifelse
/setarg 0 def
aa { tag } map /typev set
/r0 [ ] def
/m [ ] def
/v annfs.v def
aa 0 << aa 0 get toString >> put
typev [ StringP ] eq
{ /f aa 0 get def
/setarg 1 def
} { } ifelse
typev [StringP StringP] eq
{ /f aa 0 get def
/v [ aa 1 get to_records pop ] def
/setarg 1 def
} { } ifelse
typev [StringP ArrayP] eq
{ /f aa 0 get def
/v aa 1 get def
/setarg 1 def
} { } ifelse
setarg 1 eq { } { (genericAnnWithL : wrong argument) error } ifelse
[genericAnnWithL.s] v join /v set
/ss v 0 get def
annfs.verbose {
(f, v, s, f^{m}, m+r0 = ) messagen
[ f (, ) v (, ) ss (, )
(f^) m (,) m (+) r0 ] {messagen} map ( ) message
} { } ifelse
f v genericAnn /fs set
annfs.verbose {
(genericAnn is ) messagen fs message
} { } ifelse
[(KanGBmessage) annfs.verbose] system_variable
m isArray {
%% Now, let us find the b-function. /vtmp /w2 /velim /bbb /rrr /r0
v rest { /vtmp set vtmp @@@.Dsymbol vtmp 2 cat_n } map /velim set
velim { 1 } map /w2 set
annfs.verbose { w2 message } { } ifelse
[v from_records ring_of_differential_operators
[w2] weight_vector 0] define_ring
[ [ f toString . ] fs { toString . } map join [(needBack)]]
groebner_sugar /mygb set
mygb 0 get velim eliminatev 0 get /bbb set
mygb 0 get bbb position /jj set
mygb 1 get jj get 0 get /myL set
annfs.verbose { bbb message } { } ifelse
annfs.verify {
(Verifying L f - b belongs to genericAnn(f)) message
[(Homogenize) 0] system_variable
<< myL f . mul bbb sub >>
[fs { toString . } map] groebner_sugar 0 get
reduction 0 get message
(Is it zero? Then it's fine.) message
} { } ifelse
/ans [bbb [myL fs] ] def
/annfs.label1 goto
} { } ifelse
/annfs.label1
/arg1 ans def
] pop
popEnv
popVariables
arg1
} def
[(genericAnnWithL)
[$[f v] genericAnnWithL [b [L I]]$
$String f,v; poly b,L; array of poly I;$
$f is a polynomial given by a string. v is the variables.$
$ v must not contain names s, e.$
$b is the b-function (Bernstein-Sato polynomial) for f and$
$ L is the operator satisfying L f^{s+1} = b(s) f^s $
$ I is the annihilating ideal of f^s.$
$cf. bfunction, annfs, genericAnn.$
$Example 1: [(x^2+y^2) (x,y)] genericAnnWithL ::$
$Example 2: [(x^2+y^2+z^2) (x,y,z)] genericAnnWithL ::$
$Example 3: [(x^3-y^2 z^2) (x,y,z)] genericAnnWithL ::$
]] putUsages
/reduction*.noH 0 def
/reduction* {
/arg1 set
[/in-reduction* /aa /typev /setarg /f /v
/gg /wv /termorder /vec /ans /rr /mm /h /size /a0 /a3
/opt
] pushVariables
[(CurrentRingp) (KanGBmessage)] pushEnv
[
/aa arg1 def
aa isArray { } { ( << array >> reduction*) error } ifelse
/setarg 0 def
/wv 0 def
aa { tag } map /typev set
typev [StringP ArrayP ArrayP] eq
typev [ArrayP ArrayP ArrayP] eq or
typev [PolyP ArrayP ArrayP] eq or
{ /h aa 0 get def
/f aa 1 get def
/v aa 2 get from_records def
/setarg 1 def
} { } ifelse
typev [StringP ArrayP ArrayP ArrayP] eq
typev [ArrayP ArrayP ArrayP ArrayP] eq or
typev [PolyP ArrayP ArrayP ArrayP] eq or
{ /h aa 0 get def
/f aa 1 get def
/v aa 2 get from_records def
/wv aa 3 get def
/setarg 1 def
} { } ifelse
setarg { } { (reduction* : Argument mismatch) error } ifelse
[(KanGBmessage) gb.verbose ] system_variable
%%% Start of the preprocess
f getRing /rr set
rr tag 0 eq {
%% Define our own ring
v isInteger {
(Error in reduction*: Specify variables) error
} { } ifelse
wv isInteger {
[v ring_of_differential_operators
0] define_ring
/termorder 1 def
}{
[v ring_of_differential_operators
wv weight_vector
0] define_ring
wv gb.isTermOrder /termorder set
} ifelse
} {
%% Use the ring structre given by the input.
v isInteger not {
gb.warning {
(Warning : the given ring definition is not used.) message
} { } ifelse
} { } ifelse
rr ring_def
/wv rr gb.getWeight def
wv gb.isTermOrder /termorder set
} ifelse
%%% Enf of the preprocess
f 0 get isArray {
/size f 0 get length def
f { { toString . } map } map /f set
f fromVectors /f set
}{
/size -1 def
f { toString . } map /f set
} ifelse
h isArray {
h { toString . } map /h set
[h] fromVectors 0 get /h set
}{
h toString . /h set
} ifelse
f { toString . } map /f set
getOptions /opt set
[(ReduceLowerTerms) 1] system_variable
reduction*.noH {
h f reduction-noH /ans set
} {
h f reduction /ans set
} ifelse
opt restoreOptions
size -1 eq not {
[size ans 0 get] toVectors /a0 set
[size ans 3 get] toVectors /a3 set
/ans [a0 ans 1 get ans 2 get a3] def
} { } ifelse
/arg1 ans def
] pop
popEnv
popVariables
arg1
} def
[(reduction*)
[([f base v] reduction* [h c0 syz input])
([f base v weight] reduction* [h c0 syz input])
(reduction* is an user interface for reduction and reduction-noH.)
(If reduction*.noH is one, then reduction-noH will be called.)
(Example 1: [(x^2) [(x^2+y^2-4) (x y-1)] [(x) (y)]] reduction* )
(Example 2: [[(1) (y^2-1)] [ [(0) (y-1)] [(1) (y+1)]] [(x) (y)]] reduction*)
(Example 3: [(x^2) [(x^2+y^2-4) (x y-1)] [(x) (y)] [[(x) 10]] ] reduction* )
]] putUsages
%% 2000, 6/7, at Sevilla, Hernando Colon
%% macros that deal with homogenized inputs.
%% Sample: [ [(h+x). (x^3).] [(x). (x).]] /ff set
%% [(Homogenize_vec) 0] system_varialbe
%% (grade) (grave1v) switch_function
%% YA homogenization: [ [(h^3*(h+x)). (x^3).] [(h x). (x).]] /ff set
%% 4+0 3+1 2+0 1+1
/gb_h {
/arg1 set
[/in-gb_h /aa /typev /setarg /f /v
/gg /wv /termorder /vec /ans /rr /mm
/gb_h.opt
] pushVariables
[(CurrentRingp) (KanGBmessage) (Homogenize_vec)] pushEnv
[
/aa arg1 def
gb.verbose { (Getting in gb_h) message } { } ifelse
aa isArray { } { ( << array >> gb_h) error } ifelse
/setarg 0 def
/wv 0 def
aa { tag } map /typev set
typev [ ArrayP ] eq
{ /f aa 0 get def
/v gb.v def
/setarg 1 def
} { } ifelse
typev [ArrayP StringP] eq
{ /f aa 0 get def
/v aa 1 get def
/setarg 1 def
} { } ifelse
typev [ArrayP RingP] eq
{ /f aa 0 get def
/v aa 1 get def
/setarg 1 def
} { } ifelse
typev [ArrayP ArrayP] eq
{ /f aa 0 get def
/v aa 1 get from_records def
/setarg 1 def
} { } ifelse
typev [ArrayP StringP ArrayP] eq
{ /f aa 0 get def
/v aa 1 get def
/wv aa 2 get def
/setarg 1 def
} { } ifelse
typev [ArrayP ArrayP ArrayP] eq
{ /f aa 0 get def
/v aa 1 get from_records def
/wv aa 2 get def
/setarg 1 def
} { } ifelse
setarg { } { (gb_h : Argument mismatch) error } ifelse
[(KanGBmessage) gb.verbose ] system_variable
%%% Start of the preprocess
v tag RingP eq {
/rr v def
}{
f getRing /rr set
} ifelse
%% To the normal form : matrix expression.
f gb.toMatrixOfString /f set
/mm gb.itWasMatrix def
rr tag 0 eq {
%% Define our own ring
v isInteger {
(Error in gb_h: Specify variables) error
} { } ifelse
wv isInteger {
[v ring_of_differential_operators
0] define_ring
/termorder 1 def
}{
[v ring_of_differential_operators
wv weight_vector
0] define_ring
wv gb.isTermOrder /termorder set
} ifelse
} {
%% Use the ring structre given by the input.
v isInteger not {
gb.warning {
(Warning : the given ring definition is not used.) message
} { } ifelse
} { } ifelse
rr ring_def
/wv rr gb.getWeight def
wv gb.isTermOrder /termorder set
} ifelse
getOptions /gb_h.opt set
(grade) (module1v) switch_function
[(Homogenize_vec) 0] system_variable
%%% End of the preprocess
gb.verbose { (gb.options = ) messagen gb.options message } { } ifelse
termorder {
f { {. } map } map /f set
[f gb.options] groebner 0 get /gg set %% Do not use sugar.
}{
f { {. } map} map /f set
f fromVectors /f set
[f gb.options] groebner 0 get /gg set
}ifelse
wv isInteger {
/ans [gg gg {init} map] def
}{
/ans [gg gg {wv 0 get weightv init} map] def
}ifelse
%% Postprocess : recover the matrix expression.
mm {
ans { /tmp set [mm tmp] toVectors } map
/ans set
}{ }
ifelse
gb_h.opt restoreOptions
gb.verbose { (Getting out of gb_h) message } { } ifelse
%%
/arg1 ans def
] pop
popEnv
popVariables
arg1
} def
(gb_h ) messagen-quiet
[(gb_h)
[(a gb_h b)
(array a; array b;)
(b : [g ii]; array g; array in; g is a Grobner basis of f)
( in the ring of homogenized differential operators.)
( The input must be homogenized properly.)
( Inproper homogenization may cause an infinite loop.)
( Each element of vectors must be homogenized. If you are using )
( non-term orders, all elements of vectors must have the same degree with)
( a proper degree shift vector.)
$ ii is the initial ideal in case of w is given or <> belongs$
$ to a ring. In the other cases, it returns the initial monominal.$
$ [(Homogenize_vec) 0] system_variable (grade) (module1v) switch_function$
(a : [f ]; array f; f is a set of generators of an ideal in a ring.)
(a : [f v]; array f; string v; v is the variables. )
(a : [f r]; array f; ring r )
(a : [f v w]; array f; string v; array of array w; w is the weight matirx.)
( )
$Example 1: [ [( (x Dx)^2 + (y Dy)^2 -h^4) ( x y Dx Dy -h^4)] (x,y) $
$ [ [ (Dx) 1 ] ] ] gb_h pmat ; $
$Example 2: [ [[(h+x) (x^3)] [(x) (x)]] (x)] gb_h pmat $
$Example 3: [[ [(x^2) (y+x)] [(x+y) (y^3)] $
$ [(2 x^2+x y) (y h^3 +x h^3 +x y^3)]] (x,y) $
$ [ [ (x) -1 (y) -1] ] ] gb_h pmat ; $
$ Infinite loop: see by [(DebugReductionRed) 1] system_variable$
$Example 4: [[ [(x^2) (y+x)] [(x^2+y^2) (y)] $
$ [(2 x^5+x y^4) (y h^3 +x h^3 +x y^3)]] (x,y) $
$ [ [ (x) -1 (y) -1] ] ] gb_h pmat ; $
$ This is fine because grade(v_1) = grade(v_2)+1 for all vectors. $
( )
(cf. gb, groebner, syz_h. )
]] putUsages
/syz_h {
/arg1 set
[/in-syz_h /aa /typev /setarg /f /v
/gg /wv /termorder /vec /ans /ggall /vectorInput /vsize /gtmp /gtmp2
/rr /mm
/syz_h.opt
] pushVariables
[(CurrentRingp) (KanGBmessage)] pushEnv
[
/aa arg1 def
aa isArray { } { (<< array >> syz_h) error } ifelse
/setarg 0 def
/wv 0 def
aa { tag } map /typev set
typev [ ArrayP ] eq
{ /f aa 0 get def
/v syz.v def
/setarg 1 def
} { } ifelse
typev [ArrayP StringP] eq
{ /f aa 0 get def
/v aa 1 get def
/setarg 1 def
} { } ifelse
typev [ArrayP RingP] eq
{ /f aa 0 get def
/v aa 1 get def
/setarg 1 def
} { } ifelse
typev [ArrayP ArrayP] eq
{ /f aa 0 get def
/v aa 1 get from_records def
/setarg 1 def
} { } ifelse
typev [ArrayP StringP ArrayP] eq
{ /f aa 0 get def
/v aa 1 get def
/wv aa 2 get def
/setarg 1 def
} { } ifelse
typev [ArrayP ArrayP ArrayP] eq
{ /f aa 0 get def
/v aa 1 get from_records def
/wv aa 2 get def
/setarg 1 def
} { } ifelse
setarg { } { (syz_h : Argument mismatch) error } ifelse
[(KanGBmessage) syz.verbose ] system_variable
%%% Start of the preprocess
v tag RingP eq {
/rr v def
}{
f getRing /rr set
} ifelse
%% To the normal form : matrix expression.
f gb.toMatrixOfString /f set
/mm gb.itWasMatrix def
mm 0 gt {
/vectorInput 1 def
}{
/vectorInput 1 def
} ifelse
rr tag 0 eq {
%% Define our own ring
v isInteger {
(Error in syz_h: Specify variables) error
} { } ifelse
wv isInteger {
[v ring_of_differential_operators
0] define_ring
/termorder 1 def
}{
[v ring_of_differential_operators
wv weight_vector
0] define_ring
wv gb.isTermOrder /termorder set
} ifelse
}{
%% Use the ring structre given by the input.
v isInteger not {
gb.warning {
(Warning : the given ring definition is not used.) message
} { } ifelse
} { } ifelse
rr ring_def
/wv rr gb.getWeight def
wv gb.isTermOrder /termorder set
} ifelse
getOptions /syz_h.opt set
(grade) (module1v) switch_function
[(Homogenize_vec) 0] system_variable
%%% End of the preprocess
termorder {
f { {. } map } map /f set
[f [(needBack) (needSyz)]] groebner /ggall set %% Do not use sugar.
ggall 2 get /gg set
}{
f { {. } map } map /f set
[f [(needBack) (needSyz)]] groebner /ggall set
ggall 2 get /gg set
}ifelse
vectorInput {
/vsize f 0 get length def %% input vector size.
/gtmp ggall 0 get def
[vsize gtmp] toVectors /gtmp set
ggall 0 gtmp put
}{ } ifelse
syz_h.opt restoreOptions
%%
/arg1 [gg ggall] def
] pop
popEnv
popVariables
arg1
} def
(syz_h ) messagen-quiet
[(syz_h)
[(a syz_h [b c])
(array a; array b; array c)
(b is a set of generators of the syzygies of f in the ring of)
(homogenized differential operators.)
( The input must be homogenized properly.)
( Inproper homogenization may cause an infinite loop.)
( Each element of vectors must be homogenized. If you are using )
( non-term orders, all elements of vectors must have the same degree with)
( a proper degree shift vector.)
(c = [gb, backward transformation, syzygy without dehomogenization].)
(See gb_h.)
$ [(Homogenize_vec) 0] system_variable (grade) (module1v) switch_function$
(a : [f ]; array f; f is a set of generators of an ideal in a ring.)
(a : [f v]; array f; string v; v is the variables.)
(a : [f r]; array f; ring r )
(a : [f v w]; array f; string v; array of array w; w is the weight matirx.)
$Example 1: [ [( (x Dx)^2 + (y Dy)^2 -h^4) ( x y Dx Dy -h^4)] (x,y) $
$ [ [ (Dx) 1 ] ] ] syz_h pmat ; $
$Example 2: [ [[(h+x) (x^3)] [(x) (x)]] (x)] syz_h pmat $
$Example 3: [[ [(x^2) (y+x)] [(x+y) (y^3)] $
$ [(2 x^2+x y) (y h^3 +x h^3 +x y^3)]] (x,y) $
$ [ [ (x) -1 (y) -1] ] ] syz_h pmat ; $
$ Infinite loop: see by [(DebugReductionRed) 1] system_variable$
$Example 4: [[ [(x^2) (y+x)] [(x^2+y^2) (y)] $
$ [(2 x^5+x y^4) (y h^3 +x h^3 +x y^3)]] (x,y) $
$ [ [ (x) -1 (y) -1] ] ] syz_h pmat ; $
$ This is fine because grade(v_1) = grade(v_2)+1 for all vectors. $
$Example 5: [ [ [(0) (0)] [(0) (0)] [(x) (y)]] $
$ [(x) (y)]] syz pmat ;$
]] putUsages
/isSameIdeal {
/arg1 set
[/in-isSameIdeal /aa /ii /jj /iigg /jjgg /vv /ans /k /n /f] pushVariables
[(CurrentRingp)] pushEnv
[
/aa arg1 def
%% comparison of hilbert series has not yet been implemented.
aa length 3 eq { }
{ ([ii jj vv] isSameIdeal) error } ifelse
gb.verbose { (Getting in isSameIdeal) message } { } ifelse
/ii aa 0 get def
/jj aa 1 get def
/vv aa 2 get def
ii length 0 eq jj length 0 eq and
{ /ans 1 def /LLL.isSame goto } { } ifelse
[ii vv] gb /iigg set
[jj vv] gb /jjgg set
iigg getRing ring_def
/ans 1 def
iigg 0 get { [ (toe_) 3 -1 roll ] gbext } map
/iigg set
jjgg 0 get { [ (toe_) 3 -1 roll ] gbext } map
/jjgg set
gb.verbose { ( ii < jj ?) messagen } { } ifelse
iigg length /n set
0 1 n 1 sub {
/k set
iigg k get
jjgg reduction-noH 0 get
(0). eq not { /ans 0 def /LLL.isSame goto} { } ifelse
gb.verbose { (o) messagen } { } ifelse
} for
gb.verbose { ( jj < ii ?) messagen } { } ifelse
jjgg length /n set
0 1 n 1 sub {
/k set
jjgg k get
iigg reduction-noH 0 get
(0). eq not { /ans 0 def /LLL.isSame goto} { } ifelse
gb.verbose { (o) messagen } { } ifelse
} for
/LLL.isSame
gb.verbose { ( Done) message } { } ifelse
/arg1 ans def
] pop
popEnv
popVariables
arg1
} def
(isSameIdeal ) messagen-quiet
[(isSameIdeal)
[([ii jj vv] isSameIdeal bool)
(ii, jj : ideal, vv : variables)
(Note that ii and jj will be dehomogenized and compared in the ring)
(of differential operators. cf. isSameIdeal_h)
$Example 1: [ [(x^3) (y^2)] [(x^2+y) (y)] (x,y)] isSameIdeal $
$Example 2: [ [[(x^3) (0)] [(y^2) (1)]] $
$ [[(x^3+y^2) (1)] [(y^2) (1)]] (x,y)] isSameIdeal $
]] putUsages
/isSameIdeal_h {
/arg1 set
[/in-isSameIdeal_h /aa /ii /jj /iigg /jjgg /vv /ans /k /n /f
/isSameIdeal_h.opt
] pushVariables
[(CurrentRingp) (Homogenize_vec)] pushEnv
[
/aa arg1 def
gb.verbose { (Getting in isSameIdeal_h) message } { } ifelse
%% comparison of hilbert series has not yet been implemented.
aa length 3 eq { }
{ ([ii jj vv] isSameIdeal_h) error } ifelse
/ii aa 0 get def
/jj aa 1 get def
/vv aa 2 get def
ii length 0 eq jj length 0 eq and
{ /ans 1 def /LLL.isSame_h goto } { } ifelse
[ii vv] gb_h /iigg set
[jj vv] gb_h /jjgg set
iigg getRing ring_def
getOptions /isSameIdeal_h.opt set
(grade) (module1v) switch_function
[(Homogenize_vec) 0] system_variable
/ans 1 def
iigg 0 get { [ (toe_) 3 -1 roll ] gbext } map
/iigg set
jjgg 0 get { [ (toe_) 3 -1 roll ] gbext } map
/jjgg set
gb.verbose { (Comparing) message iigg message (and) message jjgg message }
{ } ifelse
gb.verbose { ( ii < jj ?) messagen } { } ifelse
iigg length /n set
0 1 n 1 sub {
/k set
iigg k get
jjgg reduction 0 get
(0). eq not { /ans 0 def /LLL.isSame_h goto} { } ifelse
gb.verbose { (o) messagen } { } ifelse
} for
gb.verbose { ( jj < ii ?) messagen } { } ifelse
jjgg length /n set
0 1 n 1 sub {
/k set
jjgg k get
iigg reduction 0 get
(0). eq not { /ans 0 def /LLL.isSame_h goto} { } ifelse
gb.verbose { (o) messagen } { } ifelse
} for
/LLL.isSame_h
gb.verbose { ( Done) message } { } ifelse
isSameIdeal_h.opt restoreOptions
/arg1 ans def
] pop
popEnv
popVariables
arg1
} def
(isSameIdeal_h ) messagen-quiet
[(isSameIdeal_h)
[([ii jj vv] isSameIdeal_h bool)
(ii, jj : ideal, vv : variables)
(Note that ii and jj will be compared in the ring)
(of homogenized differential operators. Each element of the vector must be)
(homogenized.)
$Example 1: [ [(x Dx - h^2) (Dx^2)] [(Dx^3) (x Dx-h^2)] (x)] isSameIdeal_h $
$Example 2: [ [[(x Dx -h^2) (0)] [(Dx^2) (1)]] $
$ [[(x Dx -h^2) (0)] [(Dx^2) (1)] [(Dx^3) (Dx)]] (x,y)] isSameIdeal_h $
]] putUsages
/gb.reduction {
/arg2 set
/arg1 set
[/in-gb.reduction /gbasis /flist /ans /gbasis2
] pushVariables
[(CurrentRingp) (KanGBmessage)] pushEnv
[
/gbasis arg2 def
/flist arg1 def
gbasis 0 get tag 6 eq { }
{ (gb.reduction: the second argument must be a list of lists) error }
ifelse
gbasis length 1 eq {
gbasis getRing ring_def
/gbasis2 gbasis 0 get def
} {
[ [(1)] ] gbasis rest join gb 0 get getRing ring_def
/gbasis2 gbasis 0 get ,,, def
} ifelse
flist ,,, /flist set
flist tag 6 eq {
flist { gbasis2 reduction } map /ans set
}{
flist gbasis2 reduction /ans set
} ifelse
/arg1 ans def
] pop
popEnv
popVariables
arg1
} def
/gb.reduction.test {
[
[( 2*(1-x-y) Dx + 1 ) ( 2*(1-x-y) Dy + 1 )]
(x,y) [[(Dx) 1 (Dy) 1] [(x) -1 (y) -1 (Dx) 1 (Dy) 1]]]
gb /gg set
((h-x-y)*Dx) [gg 0 get] gb.reduction /gg2 set
gg2 message
(-----------------------------) message
[[( 2*(h-x-y) Dx + h^2 ) ( 2*(h-x-y) Dy + h^2 )]
(x,y) [[(Dx) 1 (Dy) 1] [(x) -1 (y) -1 (Dx) 1 (Dy) 1]]] /ggg set
((h-x-y)*Dx) ggg gb.reduction /gg4 set
gg4 message
(-----------------------------) message
[gg2 gg4]
} def
[(gb.reduction)
[ (f basis gb.reduction r)
(f is reduced by basis by the normal form algorithm.)
(The first element of basis must be a Grobner basis.)
(r is the return value format of reduction;)
(r=[h,c0,syz,input], h = c0 f + \sum syz_i g_i)
(basis is given in the argument format of gb.)
$h[1,1](D)-homogenization is used.$
(cf. reduction, gb, ecartd.gb, gb.reduction.test )
$Example:$
$ [[( 2*(h-x-y) Dx + h^2 ) ( 2*(h-x-y) Dy + h^2 )] $
$ (x,y) [[(Dx) 1 (Dy) 1] [(x) -1 (y) -1 (Dx) 1 (Dy) 1]]] /ggg set $
$ ((h-x-y)^2*Dx*Dy) ggg gb.reduction :: $
]] putUsages
( ) message-quiet ;