/* $OpenXM: OpenXM/src/ox_ntl/ntl.rr,v 1.4 2008/09/19 10:55:40 iwane Exp $ */ module ntl; localf factor$ localf lll$ localf ex_data$ localf ex_data_tmp$ localf mat2list$ localf list2mat$ /* static variables */ /* extern variables */ #if 1 localf test_factor$ localf test_lll$ /*&usage begin: ntl.test_factor(PID, POLY) compare on ox_NTL and on asir. example: [1027] PID=ox_launch(ox_ntl); [1028] F=ntl.ex_data(4); x^16-136*x^14+6476*x^12-141912*x^10+1513334*x^8-7453176*x^6+13950764*x^4-5596840*x^2+46225 [1029] F = F * subst(F, x, x + 1)$ [1030] ntl.factor(PID, F); [[1,1],[x^16+16*x^15-16*x^14-1344*x^13-4080*x^12+32576*x^11+157376*x^10-255232*x^9-2062624*x^8-249088*x^7+10702080*x^6+9126912*x^5-18643712*x^4-24167424*x^3+2712576*x^2+10653696*x+2324736,1],[x^16-136*x^14+6476*x^12-141912*x^10+1513334*x^8-7453176*x^6+13950764*x^4-5596840*x^2+46225,1]] [1031] ntl.test(PID, F); [CPU,0.121539,0.001354,GC,0.0222,0] end: */ def test_factor(PID, F) { T0 = time(); fctr(F); T1 = time(); ntl.factor(PID, F); T2 = time(); return (["CPU", T1[0]-T0[0],T2[0]-T1[0],"GC",T1[1]-T0[1],T2[1]-T1[1]]); } def test_lll(PID, F) { T0 = time(); pari(lllint, F); T1 = time(); ntl.lll(PID, F); T2 = time(); return (["CPU", T1[0]-T0[0],T2[0]-T1[0],"GC",T1[1]-T0[1],T2[1]-T1[1]]); } #endif /*&usage begin: ntl.factor(PID, POLY) Factorize polynomial {POLY} over the rationals. {RETURN} list {POLY} univariate polynomial with rational coefficients description: Factorizes polynomial {POLY} over the rationals. The result is represented by a list, whose elements are a pair represented as [[num,1],[factor1,multiplicity1],[factor2,multiplicity2],...]. Products of all factor^multiplicity and num is equal to {POLY}. The number {num} is determined so that ({POLY}/{num}) is an integral polynomial and its content (GCD of all coefficients) is 1. author: H.Iwane example: [1282] F=(x^5-1)*(x^3+1)^2; x^11+2*x^8-x^6+x^5-2*x^3-1 [1283] ntl.factor(PID, F); [[1,1],[x^4+x^3+x^2+x+1,1],[x-1,1],[x+1,2],[x^2-x+1,2]] [1284] fctr(F); [[1,1],[x-1,1],[x^4+x^3+x^2+x+1,1],[x+1,2],[x^2-x+1,2]] ref: fctr end: */ def factor(PID, POLY) { local F, C, LIST, STR, RET, RET_NTL, VAR, I; local TYPE; /* 入力チェック */ TYPE = type(POLY); if (TYPE == 0 || TYPE == 1) { return ([[POLY,1]]); } else if (TYPE != 2) { error("ntl.factor: invalid argument"); } LIST = vars(POLY); if (length(LIST) >= 2) { /* 一変数多項式のみ */ error("ntl.factor: invalid argument"); } /* NTL で 有理係数多項式は不可 */ F = ptozp(POLY); C = sdiv(POLY, F); ox_cmo_rpc(PID, "fctr", F); RET_NTL = ox_pop_cmo(PID); /* ERROR Check */ if (type(RET_NTL) != 4 || length(RET_NTL) < 2) { return (RET_NTL); } RET = cons([RET_NTL[0] * C, 1], RET_NTL[1]); return (RET); } /*&usage begin: ex_data_tmp(F, N) Generate sample irreducible polynomial example: [1032] F=t^3-p; -p+t^3 [1033] ntl.ex_data_tmp(F,3); x^27-90*x^24+1089*x^21-62130*x^18+105507*x^15-16537410*x^12-30081453*x^9-1886601330*x^6+73062900*x^3-6859000 [1034] ntl.ex_data_tmp(F,4); -x^81+459*x^78-76896*x^75+7538094*x^72-347721147*x^69+3240161703*x^66+1032617170332*x^63-37499673798288*x^60+784360767442050*x^57+150576308695750650*x^54+771023617441694964*x^51+67248913649472410184*x^48+13913995714637027898294*x^45+270221527865987051874714*x^42-8828542741395296724347412*x^39-154971101776040822743879716*x^36+4343529580943017469231383983*x^33+4648027555241630173815780123*x^30-1072436585643253024332438894564*x^27+16237394255218510503554781142602*x^24-134104542851048701593527668875195*x^21+727430949790032393675174790142991*x^18-2727255031466780569416130788693624*x^15+7102683996190585423335589883738868*x^12-12524463688445776069953452180105904*x^9+14119870779369458313271232460210576*x^6-8591747198480108022372636571451136*x^3+2346749360904699138972190279765184 ref: ex_data end: */ def ex_data_tmp(F, N) { FP = subst(F, p, prime(0)); GP = subst(FP, t, x); for (I = 1; I < N; I++) { FP = subst(F, p, prime(I)); GP = res(t, subst(GP, x, x-t), FP); } return (GP); } /*&usage begin: ntl.ex_data(N) Generate sample irreducible polynomial example: [1028] ntl.ex_data(3); x^8-40*x^6+352*x^4-960*x^2+576 [1029] ntl.ex_data(4); x^16-136*x^14+6476*x^12-141912*x^10+1513334*x^8-7453176*x^6+13950764*x^4-5596840*x^2+46225 ref: ex_data_tmp end: */ def ex_data(N) { if (type(N) != 1 && type(N) != 10) { print("invalid argument"); return (0); } return (ex_data_tmp(t^2-p, N)); } def mat2list(M) { A = size(M); ROW=A[0]; COL=A[1]; for (I = 0; I < ROW; I++) { for (J = 0; J < COL; J++) { A = append(A, [M[I][J]]); } } return (A); } def list2mat(L) { if (type(L) != 4) { return ("Invalid Argument"); } ROW = L[0]; if (type(ROW) == 10) ROW = int32ton(ROW); COL = L[1]; if (type(COL) == 10) COL = int32ton(COL); A = newmat(ROW, COL); C = 2; for (I = 0; I < ROW; I++) { for (J = 0; J < COL; J++) { A[I][J] = L[C]; C++; } } return (A); } /*&usage begin: ntl.lll(PID, MAT) the basics of LLL reducation. {M} Matrix which element is Integer. example: [1046] def trans(M) { RET = newmat(size(M)[1], size(M)[0]); for (I = 0; I < size(M)[0]; I++) for (J = 0; J < size(M)[1]; J++) RET[J][I] = M[I][J]; return (RET); } [1047] def lllpari(A) { return (trans(trans(A) * pari(lllint, trans(A)))); } [1048] M=newmat(3, 3, [[10,0, 10], [-7,3, 30], [7, 3, 20]]); [ 10 0 10 ] [ -7 3 30 ] [ 7 3 20 ] [1049] ntl.lll(PID, M); [ 2 -6 0 ] [ -1 -3 10 ] [ 11 3 0 ] [1050] lllpari(M); [ 2 -6 0 ] [ -1 -3 10 ] [ 11 3 0 ] ref: pari(lll) end: */ def lll(PID, M) { /* parameter check */ TYPE = type(M); if (TYPE != 6) { /* matrix */ MES = "ntl.lll: invalid argument: " + TYPE; error(MES); } A = mat2list(M); ox_cmo_rpc(PID, "lll", A); RET_NTL = ox_pop_cmo(PID); /* return value check */ if (type(RET_NTL) != 4) { /* list */ error("ntl.lll: error"); } R = list2mat(RET_NTL); return (R); } endmodule; end$