/* * Copyright 1988, 1989 Hans-J. Boehm, Alan J. Demers * Copyright (c) 1991-1994 by Xerox Corporation. All rights reserved. * * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED * OR IMPLIED. ANY USE IS AT YOUR OWN RISK. * * Permission is hereby granted to use or copy this program * for any purpose, provided the above notices are retained on all copies. * Permission to modify the code and to distribute modified code is granted, * provided the above notices are retained, and a notice that the code was * modified is included with the above copyright notice. */ /* Boehm, July 11, 1995 11:54 am PDT */ # ifndef GC_HEADERS_H # define GC_HEADERS_H typedef struct hblkhdr hdr; # if CPP_WORDSZ != 32 && CPP_WORDSZ < 36 --> Get a real machine. # endif /* * The 2 level tree data structure that is used to find block headers. * If there are more than 32 bits in a pointer, the top level is a hash * table. * * This defines HDR, GET_HDR, and SET_HDR, the main macros used to * retrieve and set object headers. We also define some variants to * retrieve 2 unrelated headers in interleaved fashion. This * slightly improves scheduling. * * Since 5.0 alpha 5, we can also take advantage of a header lookup * cache. This is a locally declared direct mapped cache, used inside * the marker. The HC_GET_HDR and HC_GET_HDR2 macros use and maintain this * cache. Assuming we get reasonable hit rates, this shaves a few * memory references from each pointer validation. */ # if CPP_WORDSZ > 32 # define HASH_TL # endif /* Define appropriate out-degrees for each of the two tree levels */ # ifdef SMALL_CONFIG # define LOG_BOTTOM_SZ 11 /* Keep top index size reasonable with smaller blocks. */ # else # define LOG_BOTTOM_SZ 10 # endif # ifndef HASH_TL # define LOG_TOP_SZ (WORDSZ - LOG_BOTTOM_SZ - LOG_HBLKSIZE) # else # define LOG_TOP_SZ 11 # endif # define TOP_SZ (1 << LOG_TOP_SZ) # define BOTTOM_SZ (1 << LOG_BOTTOM_SZ) #ifndef SMALL_CONFIG # define USE_HDR_CACHE #endif /* #define COUNT_HDR_CACHE_HITS */ extern hdr * GC_invalid_header; /* header for an imaginary block */ /* containing no objects. */ /* Check whether p and corresponding hhdr point to long or invalid */ /* object. If so, advance them to */ /* beginning of block, or set hhdr to GC_invalid_header. */ #define ADVANCE(p, hhdr, source) \ if (IS_FORWARDING_ADDR_OR_NIL(hhdr)) { \ p = GC_FIND_START(p, hhdr, (word)source); \ if (p == 0) { \ hhdr = GC_invalid_header; \ } else { \ hhdr = GC_find_header(p); \ } \ } #ifdef USE_HDR_CACHE # ifdef COUNT_HDR_CACHE_HITS extern word GC_hdr_cache_hits; extern word GC_hdr_cache_misses; # define HC_HIT() ++GC_hdr_cache_hits # define HC_MISS() ++GC_hdr_cache_misses # else # define HC_HIT() # define HC_MISS() # endif typedef struct hce { word block_addr; /* right shifted by LOG_HBLKSIZE */ hdr * hce_hdr; } hdr_cache_entry; # define HDR_CACHE_SIZE 8 /* power of 2 */ # define DECLARE_HDR_CACHE \ hdr_cache_entry hdr_cache[HDR_CACHE_SIZE] # define INIT_HDR_CACHE BZERO(hdr_cache, sizeof(hdr_cache)); # define HCE(h) hdr_cache + (((word)(h) >> LOG_HBLKSIZE) & (HDR_CACHE_SIZE-1)) # define HCE_VALID_FOR(hce,h) ((hce) -> block_addr == \ ((word)(h) >> LOG_HBLKSIZE)) # define HCE_HDR(h) ((hce) -> hce_hdr) /* Analogous to GET_HDR, except that in the case of large objects, it */ /* Returns the header for the object beginning, and updates p. */ /* Returns &GC_bad_header instead of 0. All of this saves a branch */ /* in the fast path. */ # define HC_GET_HDR(p, hhdr, source) \ { \ hdr_cache_entry * hce = HCE(p); \ if (HCE_VALID_FOR(hce, p)) { \ HC_HIT(); \ hhdr = hce -> hce_hdr; \ } else { \ HC_MISS(); \ GET_HDR(p, hhdr); \ ADVANCE(p, hhdr, source); \ hce -> block_addr = (word)(p) >> LOG_HBLKSIZE; \ hce -> hce_hdr = hhdr; \ } \ } # define HC_GET_HDR2(p1, hhdr1, source1, p2, hhdr2, source2) \ { \ hdr_cache_entry * hce1 = HCE(p1); \ hdr_cache_entry * hce2 = HCE(p2); \ if (HCE_VALID_FOR(hce1, p1)) { \ HC_HIT(); \ hhdr1 = hce1 -> hce_hdr; \ } else { \ HC_MISS(); \ GET_HDR(p1, hhdr1); \ ADVANCE(p1, hhdr1, source1); \ hce1 -> block_addr = (word)(p1) >> LOG_HBLKSIZE; \ hce1 -> hce_hdr = hhdr1; \ } \ if (HCE_VALID_FOR(hce2, p2)) { \ HC_HIT(); \ hhdr2 = hce2 -> hce_hdr; \ } else { \ HC_MISS(); \ GET_HDR(p2, hhdr2); \ ADVANCE(p2, hhdr2, source2); \ hce2 -> block_addr = (word)(p2) >> LOG_HBLKSIZE; \ hce2 -> hce_hdr = hhdr2; \ } \ } #else /* !USE_HDR_CACHE */ # define DECLARE_HDR_CACHE # define INIT_HDR_CACHE # define HC_GET_HDR(p, hhdr, source) \ { \ GET_HDR(p, hhdr); \ ADVANCE(p, hhdr, source); \ } # define HC_GET_HDR2(p1, hhdr1, source1, p2, hhdr2, source2) \ { \ GET_HDR2(p1, hhdr1, p2, hhdr2); \ ADVANCE(p1, hhdr1, source1); \ ADVANCE(p2, hhdr2, source2); \ } #endif typedef struct bi { hdr * index[BOTTOM_SZ]; /* * The bottom level index contains one of three kinds of values: * 0 means we're not responsible for this block, * or this is a block other than the first one in a free block. * 1 < (long)X <= MAX_JUMP means the block starts at least * X * HBLKSIZE bytes before the current address. * A valid pointer points to a hdr structure. (The above can't be * valid pointers due to the GET_MEM return convention.) */ struct bi * asc_link; /* All indices are linked in */ /* ascending order... */ struct bi * desc_link; /* ... and in descending order. */ word key; /* high order address bits. */ # ifdef HASH_TL struct bi * hash_link; /* Hash chain link. */ # endif } bottom_index; /* extern bottom_index GC_all_nils; - really part of GC_arrays */ /* extern bottom_index * GC_top_index []; - really part of GC_arrays */ /* Each entry points to a bottom_index. */ /* On a 32 bit machine, it points to */ /* the index for a set of high order */ /* bits equal to the index. For longer */ /* addresses, we hash the high order */ /* bits to compute the index in */ /* GC_top_index, and each entry points */ /* to a hash chain. */ /* The last entry in each chain is */ /* GC_all_nils. */ # define MAX_JUMP (HBLKSIZE - 1) # define HDR_FROM_BI(bi, p) \ ((bi)->index[((word)(p) >> LOG_HBLKSIZE) & (BOTTOM_SZ - 1)]) # ifndef HASH_TL # define BI(p) (GC_top_index \ [(word)(p) >> (LOG_BOTTOM_SZ + LOG_HBLKSIZE)]) # define HDR_INNER(p) HDR_FROM_BI(BI(p),p) # ifdef SMALL_CONFIG # define HDR(p) GC_find_header((ptr_t)(p)) # else # define HDR(p) HDR_INNER(p) # endif # define GET_BI(p, bottom_indx) (bottom_indx) = BI(p) # define GET_HDR(p, hhdr) (hhdr) = HDR(p) # define SET_HDR(p, hhdr) HDR_INNER(p) = (hhdr) # define GET_HDR_ADDR(p, ha) (ha) = &(HDR_INNER(p)) # define GET_HDR2(p1, hhdr1, p2, hhdr2) \ { GET_HDR(p1, hhdr1); GET_HDR(p2, hhdr2); } # else /* hash */ /* Hash function for tree top level */ # define TL_HASH(hi) ((hi) & (TOP_SZ - 1)) /* Set bottom_indx to point to the bottom index for address p */ # define GET_BI(p, bottom_indx) \ { \ register word hi = \ (word)(p) >> (LOG_BOTTOM_SZ + LOG_HBLKSIZE); \ register bottom_index * _bi = GC_top_index[TL_HASH(hi)]; \ \ while (_bi -> key != hi && _bi != GC_all_nils) \ _bi = _bi -> hash_link; \ (bottom_indx) = _bi; \ } # define GET_HDR_ADDR(p, ha) \ { \ register bottom_index * bi; \ \ GET_BI(p, bi); \ (ha) = &(HDR_FROM_BI(bi, p)); \ } # define GET_HDR(p, hhdr) { register hdr ** _ha; GET_HDR_ADDR(p, _ha); \ (hhdr) = *_ha; } # define SET_HDR(p, hhdr) { register hdr ** _ha; GET_HDR_ADDR(p, _ha); \ *_ha = (hhdr); } # define HDR(p) GC_find_header((ptr_t)(p)) /* And some interleaved versions for two pointers at once. */ /* This hopefully helps scheduling on processors like IA64. */ # define GET_BI2(p1, bottom_indx1, p2, bottom_indx2) \ { \ register word hi1 = \ (word)(p1) >> (LOG_BOTTOM_SZ + LOG_HBLKSIZE); \ register word hi2 = \ (word)(p2) >> (LOG_BOTTOM_SZ + LOG_HBLKSIZE); \ register bottom_index * _bi1 = GC_top_index[TL_HASH(hi1)]; \ register bottom_index * _bi2 = GC_top_index[TL_HASH(hi2)]; \ \ while (_bi1 -> key != hi1 && _bi1 != GC_all_nils) \ _bi1 = _bi1 -> hash_link; \ while (_bi2 -> key != hi2 && _bi2 != GC_all_nils) \ _bi2 = _bi2 -> hash_link; \ (bottom_indx1) = _bi1; \ (bottom_indx2) = _bi2; \ } # define GET_HDR_ADDR2(p1, ha1, p2, ha2) \ { \ register bottom_index * bi1; \ register bottom_index * bi2; \ \ GET_BI2(p1, bi1, p2, bi2); \ (ha1) = &(HDR_FROM_BI(bi1, p1)); \ (ha2) = &(HDR_FROM_BI(bi2, p2)); \ } # define GET_HDR2(p1, hhdr1, p2, hhdr2) \ { register hdr ** _ha1; \ register hdr ** _ha2; \ GET_HDR_ADDR2(p1, _ha1, p2, _ha2); \ (hhdr1) = *_ha1; \ (hhdr2) = *_ha2; \ } # endif /* Is the result a forwarding address to someplace closer to the */ /* beginning of the block or NIL? */ # define IS_FORWARDING_ADDR_OR_NIL(hhdr) ((unsigned long) (hhdr) <= MAX_JUMP) /* Get an HBLKSIZE aligned address closer to the beginning of the block */ /* h. Assumes hhdr == HDR(h) and IS_FORWARDING_ADDR(hhdr). */ # define FORWARDED_ADDR(h, hhdr) ((struct hblk *)(h) - (unsigned long)(hhdr)) # endif /* GC_HEADERS_H */