This is gmp.info, produced by makeinfo version 4.2 from gmp.texi. This manual describes how to install and use the GNU multiple precision arithmetic library, version 4.1.2. Copyright 1991, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.1 or any later version published by the Free Software Foundation; with no Invariant Sections, with the Front-Cover Texts being "A GNU Manual", and with the Back-Cover Texts being "You have freedom to copy and modify this GNU Manual, like GNU software". A copy of the license is included in *Note GNU Free Documentation License::. INFO-DIR-SECTION GNU libraries START-INFO-DIR-ENTRY * gmp: (gmp). GNU Multiple Precision Arithmetic Library. END-INFO-DIR-ENTRY  File: gmp.info, Node: Top, Next: Copying, Prev: (dir), Up: (dir) GNU MP ****** This manual describes how to install and use the GNU multiple precision arithmetic library, version 4.1.2. Copyright 1991, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.1 or any later version published by the Free Software Foundation; with no Invariant Sections, with the Front-Cover Texts being "A GNU Manual", and with the Back-Cover Texts being "You have freedom to copy and modify this GNU Manual, like GNU software". A copy of the license is included in *Note GNU Free Documentation License::. * Menu: * Copying:: GMP Copying Conditions (LGPL). * Introduction to GMP:: Brief introduction to GNU MP. * Installing GMP:: How to configure and compile the GMP library. * GMP Basics:: What every GMP user should know. * Reporting Bugs:: How to usefully report bugs. * Integer Functions:: Functions for arithmetic on signed integers. * Rational Number Functions:: Functions for arithmetic on rational numbers. * Floating-point Functions:: Functions for arithmetic on floats. * Low-level Functions:: Fast functions for natural numbers. * Random Number Functions:: Functions for generating random numbers. * Formatted Output:: `printf' style output. * Formatted Input:: `scanf' style input. * C++ Class Interface:: Class wrappers around GMP types. * BSD Compatible Functions:: All functions found in BSD MP. * Custom Allocation:: How to customize the internal allocation. * Language Bindings:: Using GMP from other languages. * Algorithms:: What happens behind the scenes. * Internals:: How values are represented behind the scenes. * Contributors:: Who brings your this library? * References:: Some useful papers and books to read. * GNU Free Documentation License:: * Concept Index:: * Function Index::  File: gmp.info, Node: Copying, Next: Introduction to GMP, Prev: Top, Up: Top GNU MP Copying Conditions ************************* This library is "free"; this means that everyone is free to use it and free to redistribute it on a free basis. The library is not in the public domain; it is copyrighted and there are restrictions on its distribution, but these restrictions are designed to permit everything that a good cooperating citizen would want to do. What is not allowed is to try to prevent others from further sharing any version of this library that they might get from you. Specifically, we want to make sure that you have the right to give away copies of the library, that you receive source code or else can get it if you want it, that you can change this library or use pieces of it in new free programs, and that you know you can do these things. To make sure that everyone has such rights, we have to forbid you to deprive anyone else of these rights. For example, if you distribute copies of the GNU MP library, you must give the recipients all the rights that you have. You must make sure that they, too, receive or can get the source code. And you must tell them their rights. Also, for our own protection, we must make certain that everyone finds out that there is no warranty for the GNU MP library. If it is modified by someone else and passed on, we want their recipients to know that what they have is not what we distributed, so that any problems introduced by others will not reflect on our reputation. The precise conditions of the license for the GNU MP library are found in the Lesser General Public License version 2.1 that accompanies the source code, see `COPYING.LIB'. Certain demonstration programs are provided under the terms of the plain General Public License version 2, see `COPYING'.  File: gmp.info, Node: Introduction to GMP, Next: Installing GMP, Prev: Copying, Up: Top Introduction to GNU MP ********************** GNU MP is a portable library written in C for arbitrary precision arithmetic on integers, rational numbers, and floating-point numbers. It aims to provide the fastest possible arithmetic for all applications that need higher precision than is directly supported by the basic C types. Many applications use just a few hundred bits of precision; but some applications may need thousands or even millions of bits. GMP is designed to give good performance for both, by choosing algorithms based on the sizes of the operands, and by carefully keeping the overhead at a minimum. The speed of GMP is achieved by using fullwords as the basic arithmetic type, by using sophisticated algorithms, by including carefully optimized assembly code for the most common inner loops for many different CPUs, and by a general emphasis on speed (as opposed to simplicity or elegance). There is carefully optimized assembly code for these CPUs: ARM, DEC Alpha 21064, 21164, and 21264, AMD 29000, AMD K6, K6-2 and Athlon, Hitachi SuperH and SH-2, HPPA 1.0, 1.1 and 2.0, Intel Pentium, Pentium Pro/II/III, Pentium 4, generic x86, Intel IA-64, i960, Motorola MC68000, MC68020, MC88100, and MC88110, Motorola/IBM PowerPC 32 and 64, National NS32000, IBM POWER, MIPS R3000, R4000, SPARCv7, SuperSPARC, generic SPARCv8, UltraSPARC, DEC VAX, and Zilog Z8000. Some optimizations also for Cray vector systems, Clipper, IBM ROMP (RT), and Pyramid AP/XP. There are two public mailing lists of interest. One for general questions and discussions about usage of the GMP library and one for discussions about development of GMP. There's more information about the mailing lists at `http://swox.com/mailman/listinfo/'. These lists are *not* for bug reports. The proper place for bug reports is . See *Note Reporting Bugs:: for info about reporting bugs. For up-to-date information on GMP, please see the GMP web pages at `http://swox.com/gmp/' The latest version of the library is available at `ftp://ftp.gnu.org/gnu/gmp' Many sites around the world mirror `ftp.gnu.org', please use a mirror near you, see `http://www.gnu.org/order/ftp.html' for a full list. How to use this Manual ====================== Everyone should read *Note GMP Basics::. If you need to install the library yourself, then read *Note Installing GMP::. If you have a system with multiple ABIs, then read *Note ABI and ISA::, for the compiler options that must be used on applications. The rest of the manual can be used for later reference, although it is probably a good idea to glance through it.  File: gmp.info, Node: Installing GMP, Next: GMP Basics, Prev: Introduction to GMP, Up: Top Installing GMP ************** GMP has an autoconf/automake/libtool based configuration system. On a Unix-like system a basic build can be done with ./configure make Some self-tests can be run with make check And you can install (under `/usr/local' by default) with make install If you experience problems, please report them to . See *Note Reporting Bugs::, for information on what to include in useful bug reports. * Menu: * Build Options:: * ABI and ISA:: * Notes for Package Builds:: * Notes for Particular Systems:: * Known Build Problems::  File: gmp.info, Node: Build Options, Next: ABI and ISA, Prev: Installing GMP, Up: Installing GMP Build Options ============= All the usual autoconf configure options are available, run `./configure --help' for a summary. The file `INSTALL.autoconf' has some generic installation information too. Non-Unix Systems `configure' requires various Unix-like tools. On an MS-DOS system DJGPP can be used, and on MS Windows Cygwin or MINGW can be used, `http://www.cygnus.com/cygwin' `http://www.delorie.com/djgpp' `http://www.mingw.org' Microsoft also publishes an Interix "Services for Unix" which can be used to build GMP on Windows (with a normal `./configure'), but it's not free software. The `macos' directory contains an unsupported port to MacOS 9 on Power Macintosh, see `macos/README'. Note that MacOS X "Darwin" should use the normal Unix-style `./configure'. It might be possible to build without the help of `configure', certainly all the code is there, but unfortunately you'll be on your own. Build Directory To compile in a separate build directory, `cd' to that directory, and prefix the configure command with the path to the GMP source directory. For example cd /my/build/dir /my/sources/gmp-4.1.2/configure Not all `make' programs have the necessary features (`VPATH') to support this. In particular, SunOS and Slowaris `make' have bugs that make them unable to build in a separate directory. Use GNU `make' instead. `--disable-shared', `--disable-static' By default both shared and static libraries are built (where possible), but one or other can be disabled. Shared libraries result in smaller executables and permit code sharing between separate running processes, but on some CPUs are slightly slower, having a small cost on each function call. Native Compilation, `--build=CPU-VENDOR-OS' For normal native compilation, the system can be specified with `--build'. By default `./configure' uses the output from running `./config.guess'. On some systems `./config.guess' can determine the exact CPU type, on others it will be necessary to give it explicitly. For example, ./configure --build=ultrasparc-sun-solaris2.7 In all cases the `OS' part is important, since it controls how libtool generates shared libraries. Running `./config.guess' is the simplest way to see what it should be, if you don't know already. Cross Compilation, `--host=CPU-VENDOR-OS' When cross-compiling, the system used for compiling is given by `--build' and the system where the library will run is given by `--host'. For example when using a FreeBSD Athlon system to build GNU/Linux m68k binaries, ./configure --build=athlon-pc-freebsd3.5 --host=m68k-mac-linux-gnu Compiler tools are sought first with the host system type as a prefix. For example `m68k-mac-linux-gnu-ranlib' is tried, then plain `ranlib'. This makes it possible for a set of cross-compiling tools to co-exist with native tools. The prefix is the argument to `--host', and this can be an alias, such as `m68k-linux'. But note that tools don't have to be setup this way, it's enough to just have a `PATH' with a suitable cross-compiling `cc' etc. Compiling for a different CPU in the same family as the build system is a form of cross-compilation, though very possibly this would merely be special options on a native compiler. In any case `./configure' avoids depending on being able to run code on the build system, which is important when creating binaries for a newer CPU since they very possibly won't run on the build system. In all cases the compiler must be able to produce an executable (of whatever format) from a standard C `main'. Although only object files will go to make up `libgmp', `./configure' uses linking tests for various purposes, such as determining what functions are available on the host system. Currently a warning is given unless an explicit `--build' is used when cross-compiling, because it may not be possible to correctly guess the build system type if the `PATH' has only a cross-compiling `cc'. Note that the `--target' option is not appropriate for GMP. It's for use when building compiler tools, with `--host' being where they will run, and `--target' what they'll produce code for. Ordinary programs or libraries like GMP are only interested in the `--host' part, being where they'll run. (Some past versions of GMP used `--target' incorrectly.) CPU types In general, if you want a library that runs as fast as possible, you should configure GMP for the exact CPU type your system uses. However, this may mean the binaries won't run on older members of the family, and might run slower on other members, older or newer. The best idea is always to build GMP for the exact machine type you intend to run it on. The following CPUs have specific support. See `configure.in' for details of what code and compiler options they select. * Alpha: alpha, alphaev5, alphaev56, alphapca56, alphapca57, alphaev6, alphaev67, alphaev68 * Cray: c90, j90, t90, sv1 * HPPA: hppa1.0, hppa1.1, hppa2.0, hppa2.0n, hppa2.0w * MIPS: mips, mips3, mips64 * Motorola: m68k, m68000, m68010, m68020, m68030, m68040, m68060, m68302, m68360, m88k, m88110 * POWER: power, power1, power2, power2sc * PowerPC: powerpc, powerpc64, powerpc401, powerpc403, powerpc405, powerpc505, powerpc601, powerpc602, powerpc603, powerpc603e, powerpc604, powerpc604e, powerpc620, powerpc630, powerpc740, powerpc7400, powerpc7450, powerpc750, powerpc801, powerpc821, powerpc823, powerpc860, * SPARC: sparc, sparcv8, microsparc, supersparc, sparcv9, ultrasparc, ultrasparc2, ultrasparc2i, ultrasparc3, sparc64 * 80x86 family: i386, i486, i586, pentium, pentiummmx, pentiumpro, pentium2, pentium3, pentium4, k6, k62, k63, athlon * Other: a29k, arm, clipper, i960, ns32k, pyramid, sh, sh2, vax, z8k CPUs not listed will use generic C code. Generic C Build If some of the assembly code causes problems, or if otherwise desired, the generic C code can be selected with CPU `none'. For example, ./configure --host=none-unknown-freebsd3.5 Note that this will run quite slowly, but it should be portable and should at least make it possible to get something running if all else fails. `ABI' On some systems GMP supports multiple ABIs (application binary interfaces), meaning data type sizes and calling conventions. By default GMP chooses the best ABI available, but a particular ABI can be selected. For example ./configure --host=mips64-sgi-irix6 ABI=n32 See *Note ABI and ISA::, for the available choices on relevant CPUs, and what applications need to do. `CC', `CFLAGS' By default the C compiler used is chosen from among some likely candidates, with `gcc' normally preferred if it's present. The usual `CC=whatever' can be passed to `./configure' to choose something different. For some systems, default compiler flags are set based on the CPU and compiler. The usual `CFLAGS="-whatever"' can be passed to `./configure' to use something different or to set good flags for systems GMP doesn't otherwise know. The `CC' and `CFLAGS' used are printed during `./configure', and can be found in each generated `Makefile'. This is the easiest way to check the defaults when considering changing or adding something. Note that when `CC' and `CFLAGS' are specified on a system supporting multiple ABIs it's important to give an explicit `ABI=whatever', since GMP can't determine the ABI just from the flags and won't be able to select the correct assembler code. If just `CC' is selected then normal default `CFLAGS' for that compiler will be used (if GMP recognises it). For example `CC=gcc' can be used to force the use of GCC, with default flags (and default ABI). `CPPFLAGS' Any flags like `-D' defines or `-I' includes required by the preprocessor should be set in `CPPFLAGS' rather than `CFLAGS'. Compiling is done with both `CPPFLAGS' and `CFLAGS', but preprocessing uses just `CPPFLAGS'. This distinction is because most preprocessors won't accept all the flags the compiler does. Preprocessing is done separately in some configure tests, and in the `ansi2knr' support for K&R compilers. C++ Support, `--enable-cxx' C++ support in GMP can be enabled with `--enable-cxx', in which case a C++ compiler will be required. As a convenience `--enable-cxx=detect' can be used to enable C++ support only if a compiler can be found. The C++ support consists of a library `libgmpxx.la' and header file `gmpxx.h'. A separate `libgmpxx.la' has been adopted rather than having C++ objects within `libgmp.la' in order to ensure dynamic linked C programs aren't bloated by a dependency on the C++ standard library, and to avoid any chance that the C++ compiler could be required when linking plain C programs. `libgmpxx.la' will use certain internals from `libgmp.la' and can only be expected to work with `libgmp.la' from the same GMP version. Future changes to the relevant internals will be accompanied by renaming, so a mismatch will cause unresolved symbols rather than perhaps mysterious misbehaviour. In general `libgmpxx.la' will be usable only with the C++ compiler that built it, since name mangling and runtime support are usually incompatible between different compilers. `CXX', `CXXFLAGS' When C++ support is enabled, the C++ compiler and its flags can be set with variables `CXX' and `CXXFLAGS' in the usual way. The default for `CXX' is the first compiler that works from a list of likely candidates, with `g++' normally preferred when available. The default for `CXXFLAGS' is to try `CFLAGS', `CFLAGS' without `-g', then for `g++' either `-g -O2' or `-O2', or for other compilers `-g' or nothing. Trying `CFLAGS' this way is convenient when using `gcc' and `g++' together, since the flags for `gcc' will usually suit `g++'. It's important that the C and C++ compilers match, meaning their startup and runtime support routines are compatible and that they generate code in the same ABI (if there's a choice of ABIs on the system). `./configure' isn't currently able to check these things very well itself, so for that reason `--disable-cxx' is the default, to avoid a build failure due to a compiler mismatch. Perhaps this will change in the future. Incidentally, it's normally not good enough to set `CXX' to the same as `CC'. Although `gcc' for instance recognises `foo.cc' as C++ code, only `g++' will invoke the linker the right way when building an executable or shared library from object files. Temporary Memory, `--enable-alloca=' GMP allocates temporary workspace using one of the following three methods, which can be selected with for instance `--enable-alloca=malloc-reentrant'. * `alloca' - C library or compiler builtin. * `malloc-reentrant' - the heap, in a re-entrant fashion. * `malloc-notreentrant' - the heap, with global variables. For convenience, the following choices are also available. `--disable-alloca' is the same as `--enable-alloca=no'. * `yes' - a synonym for `alloca'. * `no' - a synonym for `malloc-reentrant'. * `reentrant' - `alloca' if available, otherwise `malloc-reentrant'. This is the default. * `notreentrant' - `alloca' if available, otherwise `malloc-notreentrant'. `alloca' is reentrant and fast, and is recommended, but when working with large numbers it can overflow the available stack space, in which case one of the two malloc methods will need to be used. Alternately it might be possible to increase available stack with `limit', `ulimit' or `setrlimit', or under DJGPP with `stubedit' or `_stklen'. Note that depending on the system the only indication of stack overflow might be a segmentation violation. `malloc-reentrant' is, as the name suggests, reentrant and thread safe, but `malloc-notreentrant' is faster and should be used if reentrancy is not required. The two malloc methods in fact use the memory allocation functions selected by `mp_set_memory_functions', these being `malloc' and friends by default. *Note Custom Allocation::. An additional choice `--enable-alloca=debug' is available, to help when debugging memory related problems (*note Debugging::). FFT Multiplication, `--disable-fft' By default multiplications are done using Karatsuba, 3-way Toom-Cook, and Fermat FFT. The FFT is only used on large to very large operands and can be disabled to save code size if desired. Berkeley MP, `--enable-mpbsd' The Berkeley MP compatibility library (`libmp') and header file (`mp.h') are built and installed only if `--enable-mpbsd' is used. *Note BSD Compatible Functions::. MPFR, `--enable-mpfr' The optional MPFR functions are built and installed only if `--enable-mpfr' is used. These are in a separate library `libmpfr.a' and are documented separately too (*note Introduction to MPFR: (mpfr)Introduction to MPFR.). Assertion Checking, `--enable-assert' This option enables some consistency checking within the library. This can be of use while debugging, *note Debugging::. Execution Profiling, `--enable-profiling=prof/gprof' Profiling support can be enabled either for `prof' or `gprof'. This adds `-p' or `-pg' respectively to `CFLAGS', and for some systems adds corresponding `mcount' calls to the assembler code. *Note Profiling::. `MPN_PATH' Various assembler versions of each mpn subroutines are provided. For a given CPU, a search is made though a path to choose a version of each. For example `sparcv8' has MPN_PATH="sparc32/v8 sparc32 generic" which means look first for v8 code, then plain sparc32 (which is v7), and finally fall back on generic C. Knowledgeable users with special requirements can specify a different path. Normally this is completely unnecessary. Documentation The document you're now reading is `gmp.texi'. The usual automake targets are available to make PostScript `gmp.ps' and/or DVI `gmp.dvi'. HTML can be produced with `makeinfo --html', see *Note Generating HTML: (texinfo)makeinfo html. Or alternately `texi2html', see *Note Texinfo to HTML: (texi2html)Top. PDF can be produced with `texi2dvi --pdf' (*note PDF: (texinfo)PDF Output.) or with `pdftex'. Some supplementary notes can be found in the `doc' subdirectory.  File: gmp.info, Node: ABI and ISA, Next: Notes for Package Builds, Prev: Build Options, Up: Installing GMP ABI and ISA =========== ABI (Application Binary Interface) refers to the calling conventions between functions, meaning what registers are used and what sizes the various C data types are. ISA (Instruction Set Architecture) refers to the instructions and registers a CPU has available. Some 64-bit ISA CPUs have both a 64-bit ABI and a 32-bit ABI defined, the latter for compatibility with older CPUs in the family. GMP supports some CPUs like this in both ABIs. In fact within GMP `ABI' means a combination of chip ABI, plus how GMP chooses to use it. For example in some 32-bit ABIs, GMP may support a limb as either a 32-bit `long' or a 64-bit `long long'. By default GMP chooses the best ABI available for a given system, and this generally gives significantly greater speed. But an ABI can be chosen explicitly to make GMP compatible with other libraries, or particular application requirements. For example, ./configure ABI=32 In all cases it's vital that all object code used in a given program is compiled for the same ABI. Usually a limb is implemented as a `long'. When a `long long' limb is used this is encoded in the generated `gmp.h'. This is convenient for applications, but it does mean that `gmp.h' will vary, and can't be just copied around. `gmp.h' remains compiler independent though, since all compilers for a particular ABI will be expected to use the same limb type. Currently no attempt is made to follow whatever conventions a system has for installing library or header files built for a particular ABI. This will probably only matter when installing multiple builds of GMP, and it might be as simple as configuring with a special `libdir', or it might require more than that. Note that builds for different ABIs need to done separately, with a fresh `./configure' and `make' each. HPPA 2.0 (`hppa2.0*') `ABI=2.0w' The 2.0w ABI uses 64-bit limbs and pointers and is available on HP-UX 11 or up when using `cc'. `gcc' support for this is in progress. Applications must be compiled with cc +DD64 `ABI=2.0n' The 2.0n ABI means the 32-bit HPPA 1.0 ABI but with a 64-bit limb using `long long'. This is available on HP-UX 10 or up when using `cc'. No `gcc' support is planned for this. Applications must be compiled with cc +DA2.0 +e `ABI=1.0' HPPA 2.0 CPUs can run all HPPA 1.0 and 1.1 code in the 32-bit HPPA 1.0 ABI. No special compiler options are needed for applications. All three ABIs are available for CPUs `hppa2.0w' and `hppa2.0', but for CPU `hppa2.0n' only 2.0n or 1.0 are allowed. MIPS under IRIX 6 (`mips*-*-irix[6789]') IRIX 6 supports the n32 and 64 ABIs and always has a 64-bit MIPS 3 or better CPU. In both these ABIs GMP uses a 64-bit limb. A new enough `gcc' is required (2.95 for instance). `ABI=n32' The n32 ABI is 32-bit pointers and integers, but with a 64-bit limb using a `long long'. Applications must be compiled with gcc -mabi=n32 cc -n32 `ABI=64' The 64-bit ABI is 64-bit pointers and integers. Applications must be compiled with gcc -mabi=64 cc -64 Note that MIPS GNU/Linux, as of kernel version 2.2, doesn't have the necessary support for n32 or 64 and so only gets a 32-bit limb and the MIPS 2 code. PowerPC 64 (`powerpc64', `powerpc620', `powerpc630') `ABI=aix64' The AIX 64 ABI uses 64-bit limbs and pointers and is available on systems `*-*-aix*'. Applications must be compiled (and linked) with gcc -maix64 xlc -q64 `ABI=32' This is the basic 32-bit PowerPC ABI. No special compiler options are needed for applications. Sparc V9 (`sparcv9' and `ultrasparc*') `ABI=64' The 64-bit V9 ABI is available on Solaris 2.7 and up and GNU/Linux. GCC 2.95 or up, or Sun `cc' is required. Applications must be compiled with gcc -m64 -mptr64 -Wa,-xarch=v9 -mcpu=v9 cc -xarch=v9 `ABI=32' On Solaris 2.6 and earlier, and on Solaris 2.7 with the kernel in 32-bit mode, only the plain V8 32-bit ABI can be used, since the kernel doesn't save all registers. GMP still uses as much of the V9 ISA as it can in these circumstances. No special compiler options are required for applications, though using something like the following requesting V9 code within the V8 ABI is recommended. gcc -mv8plus cc -xarch=v8plus `gcc' 2.8 and earlier only supports `-mv8' though. Don't be confused by the names of these sparc `-m' and `-x' options, they're called `arch' but they effectively control the ABI. On Solaris 2.7 with the kernel in 32-bit-mode, a normal native build will reject `ABI=64' because the resulting executables won't run. `ABI=64' can still be built if desired by making it look like a cross-compile, for example ./configure --build=none --host=sparcv9-sun-solaris2.7 ABI=64  File: gmp.info, Node: Notes for Package Builds, Next: Notes for Particular Systems, Prev: ABI and ISA, Up: Installing GMP Notes for Package Builds ======================== GMP should present no great difficulties for packaging in a binary distribution. Libtool is used to build the library and `-version-info' is set appropriately, having started from `3:0:0' in GMP 3.0. The GMP 4 series will be upwardly binary compatible in each release and will be upwardly binary compatible with all of the GMP 3 series. Additional function interfaces may be added in each release, so on systems where libtool versioning is not fully checked by the loader an auxiliary mechanism may be needed to express that a dynamic linked application depends on a new enough GMP. An auxiliary mechanism may also be needed to express that `libgmpxx.la' (from `--enable-cxx', *note Build Options::) requires `libgmp.la' from the same GMP version, since this is not done by the libtool versioning, nor otherwise. A mismatch will result in unresolved symbols from the linker, or perhaps the loader. Using `DESTDIR' or a `prefix' override with `make install' and a shared `libgmpxx' may run into a libtool relinking problem, see *Note Known Build Problems::. When building a package for a CPU family, care should be taken to use `--host' (or `--build') to choose the least common denominator among the CPUs which might use the package. For example this might necessitate `i386' for x86s, or plain `sparc' (meaning V7) for SPARCs. Users who care about speed will want GMP built for their exact CPU type, to make use of the available optimizations. Providing a way to suitably rebuild a package may be useful. This could be as simple as making it possible for a user to omit `--build' (and `--host') so `./config.guess' will detect the CPU. But a way to manually specify a `--build' will be wanted for systems where `./config.guess' is inexact. Note that `gmp.h' is a generated file, and will be architecture and ABI dependent.  File: gmp.info, Node: Notes for Particular Systems, Next: Known Build Problems, Prev: Notes for Package Builds, Up: Installing GMP Notes for Particular Systems ============================ AIX 3 and 4 On systems `*-*-aix[34]*' shared libraries are disabled by default, since some versions of the native `ar' fail on the convenience libraries used. A shared build can be attempted with ./configure --enable-shared --disable-static Note that the `--disable-static' is necessary because in a shared build libtool makes `libgmp.a' a symlink to `libgmp.so', apparently for the benefit of old versions of `ld' which only recognise `.a', but unfortunately this is done even if a fully functional `ld' is available. ARM On systems `arm*-*-*', versions of GCC up to and including 2.95.3 have a bug in unsigned division, giving wrong results for some operands. GMP `./configure' will demand GCC 2.95.4 or later. Compaq C++ Compaq C++ on OSF 5.1 has two flavours of `iostream', a standard one and an old pre-standard one (see `man iostream_intro'). GMP can only use the standard one, which unfortunately is not the default but must be selected by defining `__USE_STD_IOSTREAM'. Configure with for instance ./configure --enable-cxx CPPFLAGS=-D__USE_STD_IOSTREAM Microsoft Windows On systems `*-*-cygwin*', `*-*-mingw*' and `*-*-pw32*' by default GMP builds only a static library, but a DLL can be built instead using ./configure --disable-static --enable-shared Static and DLL libraries can't both be built, since certain export directives in `gmp.h' must be different. `--enable-cxx' cannot be used when building a DLL, since libtool doesn't currently support C++ DLLs. This might change in the future. Microsoft C A MINGW DLL build of GMP can be used with Microsoft C. Libtool doesn't install `.lib' and `.exp' files, but they can be created with the following commands, where `/my/inst/dir' is the install directory (with a `lib' subdirectory). lib /machine:IX86 /def:_libs/libgmp-3.dll-def cp libgmp-3.lib /my/inst/dir/lib cp _libs/libgmp-3.dll-exp /my/inst/dir/lib/libgmp-3.exp MINGW uses `msvcrt.dll' for I/O, so applications wanting to use the GMP I/O routines must be compiled with `cl /MD' to do the same. If one of the other I/O choices provided by MS C is desired then the suggestion is to use the GMP string functions and confine I/O to the application. Motorola 68k CPU Types `m68k' is taken to mean 68000. `m68020' or higher will give a performance boost on applicable CPUs. `m68360' can be used for CPU32 series chips. `m68302' can be used for "Dragonball" series chips, though this is merely a synonym for `m68000'. OpenBSD 2.6 `m4' in this release of OpenBSD has a bug in `eval' that makes it unsuitable for `.asm' file processing. `./configure' will detect the problem and either abort or choose another m4 in the `PATH'. The bug is fixed in OpenBSD 2.7, so either upgrade or use GNU m4. Power CPU Types In GMP, CPU types `power*' and `powerpc*' will each use instructions not available on the other, so it's important to choose the right one for the CPU that will be used. Currently GMP has no assembler code support for using just the common instruction subset. To get executables that run on both, the current suggestion is to use the generic C code (CPU `none'), possibly with appropriate compiler options (like `-mcpu=common' for `gcc'). CPU `rs6000' (which is not a CPU but a family of workstations) is accepted by `config.sub', but is currently equivalent to `none'. Sparc CPU Types `sparcv8' or `supersparc' on relevant systems will give a significant performance increase over the V7 code. Sparc App Regs The GMP assembler code for both 32-bit and 64-bit Sparc clobbers the "application registers" `g2', `g3' and `g4', the same way that the GCC default `-mapp-regs' does (*note SPARC Options: (gcc)SPARC Options.). This makes that code unsuitable for use with the special V9 `-mcmodel=embmedany' (which uses `g4' as a data segment pointer), and for applications wanting to use those registers for special purposes. In these cases the only suggestion currently is to build GMP with CPU `none' to avoid the assembler code. SunOS 4 `/usr/bin/m4' lacks various features needed to process `.asm' files, and instead `./configure' will automatically use `/usr/5bin/m4', which we believe is always available (if not then use GNU m4). x86 CPU Types `i386' selects generic code which will run reasonably well on all x86 chips. `i586', `pentium' or `pentiummmx' code is good for the intended P5 Pentium chips, but quite slow when run on Intel P6 class chips (PPro, P-II, P-III). `i386' is a better choice when making binaries that must run on both. `pentium4' and an SSE2 capable assembler are important for best results on Pentium 4. The specific code is for instance roughly a 2x to 3x speedup over the generic `i386' code. x86 MMX and SSE2 Code If the CPU selected has MMX code but the assembler doesn't support it, a warning is given and non-MMX code is used instead. This will be an inferior build, since the MMX code that's present is there because it's faster than the corresponding plain integer code. The same applies to SSE2. Old versions of `gas' don't support MMX instructions, in particular version 1.92.3 that comes with FreeBSD 2.2.8 doesn't (and unfortunately there's no newer assembler for that system). Solaris 2.6 and 2.7 `as' generate incorrect object code for register to register `movq' instructions, and so can't be used for MMX code. Install a recent `gas' if MMX code is wanted on these systems.  File: gmp.info, Node: Known Build Problems, Prev: Notes for Particular Systems, Up: Installing GMP Known Build Problems ==================== You might find more up-to-date information at `http://swox.com/gmp/'. Compiler link options The version of libtool currently in use rather aggressively strips compiler options when linking a shared library. This will hopefully be relaxed in the future, but for now if this is a problem the suggestion is to create a little script to hide them, and for instance configure with ./configure CC=gcc-with-my-options DJGPP The DJGPP port of `bash' 2.03 is unable to run the `configure' script, it exits silently, having died writing a preamble to `config.log'. Use `bash' 2.04 or higher. `make all' was found to run out of memory during the final `libgmp.la' link on one system tested, despite having 64Mb available. A separate `make libgmp.la' helped, perhaps recursing into the various subdirectories uses up memory. `DESTDIR' and shared `libgmpxx' `make install DESTDIR=/my/staging/area', or the same with a `prefix' override, to install to a temporary directory is not fully supported by current versions of libtool when building a shared version of a library which depends on another being built at the same time, like `libgmpxx' and `libgmp'. The problem is that `libgmpxx' is relinked at the install stage to ensure that if the system puts a hard-coded path to `libgmp' within `libgmpxx' then that path will be correct. Naturally the linker is directed to look only at the final location, not the staging area, so if `libgmp' is not already in that final location then the link will fail. A workaround for this on SVR4 style systems, such as GNU/Linux, where paths are not hard-coded, is to include the staging area in the linker's search using `LD_LIBRARY_PATH'. For example with `--prefix=/usr' but installing under `/my/staging/area', LD_LIBRARY_PATH=/my/staging/area/usr/lib \ make install DESTDIR=/my/staging/area GNU binutils `strip' prior to 2.12 `strip' from GNU binutils 2.11 and earlier should not be used on the static libraries `libgmp.a' and `libmp.a' since it will discard all but the last of multiple archive members with the same name, like the three versions of `init.o' in `libgmp.a'. Binutils 2.12 or higher can be used successfully. The shared libraries `libgmp.so' and `libmp.so' are not affected by this and any version of `strip' can be used on them. `make' syntax error On certain versions of SCO OpenServer 5 and IRIX 6.5 the native `make' is unable to handle the long dependencies list for `libgmp.la'. The symptom is a "syntax error" on the following line of the top-level `Makefile'. libgmp.la: $(libgmp_la_OBJECTS) $(libgmp_la_DEPENDENCIES) Either use GNU Make, or as a workaround remove `$(libgmp_la_DEPENDENCIES)' from that line (which will make the initial build work, but if any recompiling is done `libgmp.la' might not be rebuilt). MacOS X and GCC Libtool currently only knows how to create shared libraries on MacOS X using the native `cc' (which is a modified GCC), not a plain GCC. A static-only build should work though (`--disable-shared'). Also, libtool currently cannot build C++ shared libraries on MacOS X, so if `--enable-cxx' is desired then `--disable-shared' must be used. Hopefully this will be fixed in the future. NeXT prior to 3.3 The system compiler on old versions of NeXT was a massacred and old GCC, even if it called itself `cc'. This compiler cannot be used to build GMP, you need to get a real GCC, and install that. (NeXT may have fixed this in release 3.3 of their system.) POWER and PowerPC Bugs in GCC 2.7.2 (and 2.6.3) mean it can't be used to compile GMP on POWER or PowerPC. If you want to use GCC for these machines, get GCC 2.7.2.1 (or later). Sequent Symmetry Use the GNU assembler instead of the system assembler, since the latter has serious bugs. Solaris 2.6 The system `sed' prints an error "Output line too long" when libtool builds `libgmp.la'. This doesn't seem to cause any obvious ill effects, but GNU `sed' is recommended, to avoid any doubt. Sparc Solaris 2.7 with gcc 2.95.2 in ABI=32 A shared library build of GMP seems to fail in this combination, it builds but then fails the tests, apparently due to some incorrect data relocations within `gmp_randinit_lc_2exp_size'. The exact cause is unknown, `--disable-shared' is recommended. Windows DLL test programs When creating a DLL version of `libgmp', libtool creates wrapper scripts like `t-mul' for programs that would normally be `t-mul.exe', in order to setup the right library paths etc. This works fine, but the absence of `t-mul.exe' etc causes `make' to think they need recompiling every time, which is an annoyance when re-running a `make check'.  File: gmp.info, Node: GMP Basics, Next: Reporting Bugs, Prev: Installing GMP, Up: Top GMP Basics ********** *Using functions, macros, data types, etc. not documented in this manual is strongly discouraged. If you do so your application is guaranteed to be incompatible with future versions of GMP.* * Menu: * Headers and Libraries:: * Nomenclature and Types:: * Function Classes:: * Variable Conventions:: * Parameter Conventions:: * Memory Management:: * Reentrancy:: * Useful Macros and Constants:: * Compatibility with older versions:: * Demonstration Programs:: * Efficiency:: * Debugging:: * Profiling:: * Autoconf:: * Emacs::  File: gmp.info, Node: Headers and Libraries, Next: Nomenclature and Types, Prev: GMP Basics, Up: GMP Basics Headers and Libraries ===================== All declarations needed to use GMP are collected in the include file `gmp.h'. It is designed to work with both C and C++ compilers. #include Note however that prototypes for GMP functions with `FILE *' parameters are only provided if `' is included too. #include #include Likewise `' (or `') is required for prototypes with `va_list' parameters, such as `gmp_vprintf'. And `' for prototypes with `struct obstack' parameters, such as `gmp_obstack_printf', when available. All programs using GMP must link against the `libgmp' library. On a typical Unix-like system this can be done with `-lgmp', for example gcc myprogram.c -lgmp GMP C++ functions are in a separate `libgmpxx' library. This is built and installed if C++ support has been enabled (*note Build Options::). For example, g++ mycxxprog.cc -lgmpxx -lgmp GMP is built using Libtool and an application can use that to link if desired, *note Shared library support for GNU: (libtool)Top. If GMP has been installed to a non-standard location then it may be necessary to use `-I' and `-L' compiler options to point to the right directories, and some sort of run-time path for a shared library. Consult your compiler documentation, for instance *Note Introduction: (gcc)Top.  File: gmp.info, Node: Nomenclature and Types, Next: Function Classes, Prev: Headers and Libraries, Up: GMP Basics Nomenclature and Types ====================== In this manual, "integer" usually means a multiple precision integer, as defined by the GMP library. The C data type for such integers is `mpz_t'. Here are some examples of how to declare such integers: mpz_t sum; struct foo { mpz_t x, y; }; mpz_t vec[20]; "Rational number" means a multiple precision fraction. The C data type for these fractions is `mpq_t'. For example: mpq_t quotient; "Floating point number" or "Float" for short, is an arbitrary precision mantissa with a limited precision exponent. The C data type for such objects is `mpf_t'. A "limb" means the part of a multi-precision number that fits in a single machine word. (We chose this word because a limb of the human body is analogous to a digit, only larger, and containing several digits.) Normally a limb is 32 or 64 bits. The C data type for a limb is `mp_limb_t'.  File: gmp.info, Node: Function Classes, Next: Variable Conventions, Prev: Nomenclature and Types, Up: GMP Basics Function Classes ================ There are six classes of functions in the GMP library: 1. Functions for signed integer arithmetic, with names beginning with `mpz_'. The associated type is `mpz_t'. There are about 150 functions in this class. 2. Functions for rational number arithmetic, with names beginning with `mpq_'. The associated type is `mpq_t'. There are about 40 functions in this class, but the integer functions can be used for arithmetic on the numerator and denominator separately. 3. Functions for floating-point arithmetic, with names beginning with `mpf_'. The associated type is `mpf_t'. There are about 60 functions is this class. 4. Functions compatible with Berkeley MP, such as `itom', `madd', and `mult'. The associated type is `MINT'. 5. Fast low-level functions that operate on natural numbers. These are used by the functions in the preceding groups, and you can also call them directly from very time-critical user programs. These functions' names begin with `mpn_'. The associated type is array of `mp_limb_t'. There are about 30 (hard-to-use) functions in this class. 6. Miscellaneous functions. Functions for setting up custom allocation and functions for generating random numbers.  File: gmp.info, Node: Variable Conventions, Next: Parameter Conventions, Prev: Function Classes, Up: GMP Basics Variable Conventions ==================== GMP functions generally have output arguments before input arguments. This notation is by analogy with the assignment operator. The BSD MP compatibility functions are exceptions, having the output arguments last. GMP lets you use the same variable for both input and output in one call. For example, the main function for integer multiplication, `mpz_mul', can be used to square `x' and put the result back in `x' with mpz_mul (x, x, x); Before you can assign to a GMP variable, you need to initialize it by calling one of the special initialization functions. When you're done with a variable, you need to clear it out, using one of the functions for that purpose. Which function to use depends on the type of variable. See the chapters on integer functions, rational number functions, and floating-point functions for details. A variable should only be initialized once, or at least cleared between each initialization. After a variable has been initialized, it may be assigned to any number of times. For efficiency reasons, avoid excessive initializing and clearing. In general, initialize near the start of a function and clear near the end. For example, void foo (void) { mpz_t n; int i; mpz_init (n); for (i = 1; i < 100; i++) { mpz_mul (n, ...); mpz_fdiv_q (n, ...); ... } mpz_clear (n); }