/* mpfr_pi -- compute Pi Copyright (C) 1999 PolKA project, Inria Lorraine and Loria This file is part of the MPFR Library. The MPFR Library is free software; you can redistribute it and/or modify it under the terms of the GNU Library General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. The MPFR Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public License for more details. You should have received a copy of the GNU Library General Public License along with the MPFR Library; see the file COPYING.LIB. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include #include #include "gmp.h" #include "gmp-impl.h" #include "longlong.h" #include "mpfr.h" /* Set x to the value of Pi to precision PREC(x) rounded to direction rnd_mode. Use the formula giving the binary representation of Pi found by Simon Plouffe and the Borwein's brothers: infinity 4 2 1 1 ----- ------- - ------- - ------- - ------- \ 8 n + 1 8 n + 4 8 n + 5 8 n + 6 Pi = ) ------------------------------------- / n ----- 16 n = 0 i.e. Pi*16^N = S(N) + R(N) where S(N) = sum(16^(N-n)*(4/(8*n+1)-2/(8*n+4)-1/(8*n+5)-1/(8*n+6)), n=0..N-1) R(N) = sum((4/(8*n+1)-2/(8*n+4)-1/(8*n+5)-1/(8*n+6))/16^(n-N), n=N..infinity) Let f(n) = 4/(8*n+1)-2/(8*n+4)-1/(8*n+5)-1/(8*n+6), we can show easily that f(n) < 15/(64*n^2), so R(N) < sum(15/(64*n^2)/16^(n-N), n=N..infinity) < 15/64/N^2*sum(1/16^(n-N), n=N..infinity) = 1/4/N^2 Now let S'(N) = sum(floor(16^(N-n)*(120*n^2+151*n+47), (512*n^4+1024*n^3+712*n^2+194*n+15)), n=0..N-1) S(N)-S'(N) <= sum(1, n=0..N-1) = N so Pi*16^N-S'(N) <= N+1 (as 1/4/N^2 < 1) */ mpfr_t __mpfr_pi; /* stored value of Pi */ int __mpfr_pi_prec=0; /* precision of stored value */ char __mpfr_pi_rnd; /* rounding mode of stored value */ void #if __STDC__ mpfr_pi(mpfr_ptr x, unsigned char rnd_mode) #else mpfr_pi(x, rnd_mode) mpfr_ptr x; unsigned char rnd_mode; #endif { int N, oldN, n, prec; mpz_t pi, num, den, d3, d2, tmp; mpfr_t y; prec=PREC(x); /* has stored value enough precision ? */ if ((prec==__mpfr_pi_prec && rnd_mode==__mpfr_pi_rnd) || (prec<=__mpfr_pi_prec && mpfr_can_round(__mpfr_pi, __mpfr_pi_prec, __mpfr_pi_rnd, rnd_mode, prec))) { mpfr_set(x, __mpfr_pi, rnd_mode); return; } /* need to recompute */ N=1; do { oldN = N; N = (prec+3)/4 + (int)ceil(log((double)N+1.0)/log(2.0)); } while (N != oldN); mpz_init(pi); mpz_init(num); mpz_init(den); mpz_init(d3); mpz_init(d2); mpz_init(tmp); mpz_set_ui(pi, 0); mpz_set_ui(num, 16); /* num(-1) */ mpz_set_ui(den, 21); /* den(-1) */ mpz_set_si(d3, -2454); mpz_set_ui(d2, 14736); /* invariants: num=120*n^2+151*n+47, den=512*n^4+1024*n^3+712*n^2+194*n+15 d3 = 2048*n^3+400*n-6, d2 = 6144*n^2-6144*n+2448 */ for (n=0; n0) mpz_add_ui(d2, d2, 12288*(n-1)); else mpz_sub_ui(d2, d2, 12288); /* d3(n) - d3(n-1) = d2 */ mpz_add(d3, d3, d2); /* den(n)-den(n-1) = 2048*n^3 + 400n - 6 = d3 */ mpz_add(den, den, d3); mpz_mul_2exp(tmp, num, 4*(N-n)); mpz_fdiv_q(tmp, tmp, den); mpz_add(pi, pi, tmp); } mpfr_set_z(x, pi, rnd_mode); mpfr_init2(y, mpfr_get_prec(x)); mpz_add_ui(pi, pi, N+1); mpfr_set_z(y, pi, rnd_mode); if (mpfr_cmp(x, y) != 0) { fprintf(stderr, "does not converge\n"); exit(1); } EXP(x) -= 4*N; mpz_clear(pi); mpz_clear(num); mpz_clear(den); mpz_clear(d3); mpz_clear(d2); mpz_clear(tmp); mpfr_clear(y); /* store computed value */ if (__mpfr_pi_prec==0) mpfr_init2(__mpfr_pi, prec); else mpfr_set_prec(__mpfr_pi, prec); mpfr_set(__mpfr_pi, x, rnd_mode); __mpfr_pi_prec=prec; __mpfr_pi_rnd=rnd_mode; }