/* mpz_perfect_power_p(arg) -- Return non-zero if ARG is a perfect power, zero otherwise. Copyright 1998, 1999, 2000, 2001 Free Software Foundation, Inc. This file is part of the GNU MP Library. The GNU MP Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU MP Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU MP Library; see the file COPYING.LIB. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* We are to determine if c is a perfect power, c = a ^ b. Assume c is divisible by 2^n and that codd = c/2^n is odd. Assume a is divisible by 2^m and that aodd = a/2^m is odd. It is always true that m divides n. * If n is prime, either 1) a is 2*aodd and b = n or 2) a = c and b = 1. So for n prime, we readily have a solution. * If n is factorable into the non-trivial factors p1,p2,... Since m divides n, m has a subset of n's factors and b = n / m. */ /* This is a naive approach to recognizing perfect powers. Many things can be improved. In particular, we should use p-adic arithmetic for computing possible roots. */ #include /* for NULL */ #include "gmp.h" #include "gmp-impl.h" #include "longlong.h" static unsigned long int gcd _PROTO ((unsigned long int a, unsigned long int b)); static int isprime _PROTO ((unsigned long int t)); static const unsigned short primes[] = { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97,101,103,107,109,113,127,131, 137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223, 227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311, 313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409, 419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503, 509,521,523,541,547,557,563,569,571,577,587,593,599,601,607,613, 617,619,631,641,643,647,653,659,661,673,677,683,691,701,709,719, 727,733,739,743,751,757,761,769,773,787,797,809,811,821,823,827, 829,839,853,857,859,863,877,881,883,887,907,911,919,929,937,941, 947,953,967,971,977,983,991,997,0 }; #define SMALLEST_OMITTED_PRIME 1009 int mpz_perfect_power_p (mpz_srcptr u) { unsigned long int prime; unsigned long int n, n2; int i; unsigned long int rem; mpz_t u2, q; int exact; mp_size_t uns; mp_size_t usize = SIZ (u); TMP_DECL (marker); if (usize == 0) return 1; /* consider 0 a perfect power */ n2 = mpz_scan1 (u, 0); if (n2 == 1) return 0; /* 2 divides exactly once. */ if (n2 != 0 && (n2 & 1) == 0 && usize < 0) return 0; /* 2 has even multiplicity with negative U */ TMP_MARK (marker); uns = ABS (usize) - n2 / BITS_PER_MP_LIMB; MPZ_TMP_INIT (q, uns); MPZ_TMP_INIT (u2, uns); mpz_tdiv_q_2exp (u2, u, n2); if (isprime (n2)) goto n2prime; for (i = 1; primes[i] != 0; i++) { prime = primes[i]; rem = mpz_tdiv_ui (u2, prime); if (rem == 0) /* divisable by this prime? */ { rem = mpz_tdiv_q_ui (q, u2, prime * prime); if (rem != 0) { TMP_FREE (marker); return 0; /* prime divides exactly once, reject */ } mpz_swap (q, u2); for (n = 2;;) { rem = mpz_tdiv_q_ui (q, u2, prime); if (rem != 0) break; mpz_swap (q, u2); n++; } if ((n & 1) == 0 && usize < 0) { TMP_FREE (marker); return 0; /* even multiplicity with negative U, reject */ } n2 = gcd (n2, n); if (n2 == 1) { TMP_FREE (marker); return 0; /* we have multiplicity 1 of some factor */ } if (mpz_cmpabs_ui (u2, 1) == 0) { TMP_FREE (marker); return 1; /* factoring completed; consistent power */ } /* As soon as n2 becomes a prime number, stop factoring. Either we have u=x^n2 or u is not a perfect power. */ if (isprime (n2)) goto n2prime; } } if (n2 == 0) { /* We found no factors above; have to check all values of n. */ unsigned long int nth; for (nth = usize < 0 ? 3 : 2;; nth++) { if (! isprime (nth)) continue; #if 0 exact = mpz_padic_root (q, u2, nth, PTH); if (exact) #endif exact = mpz_root (q, u2, nth); if (exact) { TMP_FREE (marker); return 1; } if (mpz_cmp_ui (q, SMALLEST_OMITTED_PRIME) < 0) { TMP_FREE (marker); return 0; } } } else { unsigned long int nth; /* We found some factors above. We just need to consider values of n that divides n2. */ for (nth = 2; nth <= n2; nth++) { if (! isprime (nth)) continue; if (n2 % nth != 0) continue; #if 0 exact = mpz_padic_root (q, u2, nth, PTH); if (exact) #endif exact = mpz_root (q, u2, nth); if (exact) { TMP_FREE (marker); return 1; } if (mpz_cmp_ui (q, SMALLEST_OMITTED_PRIME) < 0) { TMP_FREE (marker); return 0; } } TMP_FREE (marker); return 0; } n2prime: exact = mpz_root (NULL, u2, n2); TMP_FREE (marker); return exact; } static unsigned long int gcd (unsigned long int a, unsigned long int b) { int an2, bn2, n2; if (a == 0) return b; if (b == 0) return a; count_trailing_zeros (an2, a); a >>= an2; count_trailing_zeros (bn2, b); b >>= bn2; n2 = MIN (an2, bn2); while (a != b) { if (a > b) { a -= b; do a >>= 1; while ((a & 1) == 0); } else /* b > a. */ { b -= a; do b >>= 1; while ((b & 1) == 0); } } return a << n2; } static int isprime (unsigned long int t) { unsigned long int q, r, d; if (t < 3 || (t & 1) == 0) return t == 2; for (d = 3, r = 1; r != 0; d += 2) { q = t / d; r = t - q * d; if (q < d) return 1; } return 0; }