/* Create tuned thresholds for various algorithms. */ /* Copyright (C) 1999, 2000 Free Software Foundation, Inc. This file is part of the GNU MP Library. The GNU MP Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU MP Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU MP Library; see the file COPYING.LIB. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* Usage: tune [-t] [-t] [-p precision] -t turns on some diagnostic traces, a second -t turns on more traces. The thresholds are determined as follows. A crossover may not be a single size but rather a range where it oscillates between method A or method B faster. If the threshold is set making B used where A is faster (or vice versa) that's bad. Badness is the percentage time lost and total badness is the sum of this over all sizes measured. The threshold is set to minimize total badness. Suppose, as sizes increase, method B becomes faster than method A. The effect of the rule is that, as you look at increasing sizes, isolated points where B is faster are ignored, but when it's consistently faster, or faster on balance, then the threshold is set there. The same result is obtained thinking in the other direction of A becoming faster at smaller sizes. In practice the thresholds tend to be chosen to bring on the next algorithm fairly quickly. This rule is attractive because it's got a basis in reason and is fairly easy to implement, but no work has been done to actually compare it in absolute terms to other possibilities. Sometimes running the program twice produces slightly different results. This is probably because there's so little separating algorithms near their crossover, and on that basis it should make little or no difference to the final speed of the relevant routines, but nothing has been done to check that carefully. Limitations: The FFTs aren't subject to the same badness rule as the other thresholds, so each k is probably being brought on a touch early. This isn't likely to make a difference, and the simpler probing means fewer tests. */ #define TUNE_PROGRAM_BUILD 1 #include #include #include #include #include #include "gmp.h" #include "gmp-impl.h" #include "speed.h" #include "sqr_basecase.h" #if !HAVE_DECL_OPTARG extern char *optarg; extern int optind, opterr; #endif #define MAX_SIZE 1000 /* limbs */ #define STEP_FACTOR 0.01 /* how much to step sizes by (rounded down) */ #define MAX_TABLE 2 /* threshold entries */ #if WANT_FFT mp_size_t option_fft_max_size = 50000; /* limbs */ #else mp_size_t option_fft_max_size = 0; #endif int option_trace = 0; int option_fft_trace = 0; struct speed_params s; struct dat_t { mp_size_t size; double d; } *dat = NULL; int ndat = 0; int allocdat = 0; /* Each "_threshold" array must be 1 bigger than the number of thresholds being tuned in a set, because one() stores an value in the entry above the one it's determining. */ mp_size_t mul_threshold[MAX_TABLE+1] = { MP_SIZE_T_MAX }; mp_size_t fft_modf_mul_threshold = MP_SIZE_T_MAX; mp_size_t sqr_threshold[MAX_TABLE+1] = { MP_SIZE_T_MAX }; mp_size_t fft_modf_sqr_threshold = MP_SIZE_T_MAX; mp_size_t bz_threshold[2] = { MP_SIZE_T_MAX }; mp_size_t fib_threshold[2] = { MP_SIZE_T_MAX }; mp_size_t powm_threshold[2] = { MP_SIZE_T_MAX }; mp_size_t gcd_accel_threshold[2] = { MP_SIZE_T_MAX }; mp_size_t gcdext_threshold[2] = { MP_SIZE_T_MAX }; #ifndef KARATSUBA_SQR_MAX #define KARATSUBA_SQR_MAX 0 /* meaning no limit */ #endif struct param_t { const char *name[MAX_TABLE]; int stop_since_change; mp_size_t min_size; mp_size_t max_size[MAX_TABLE]; }; /* Add an entry to the end of the dat[] array, reallocing to make it bigger if necessary. */ void add_dat (mp_size_t size, double d) { #define ALLOCDAT_STEP 500 ASSERT_ALWAYS (ndat <= allocdat); if (ndat == allocdat) { dat = (struct dat_t *) _mp_allocate_or_reallocate (dat, allocdat * sizeof(dat[0]), (allocdat+ALLOCDAT_STEP) * sizeof(dat[0])); allocdat += ALLOCDAT_STEP; } dat[ndat].size = size; dat[ndat].d = d; ndat++; } /* Return the threshold size based on the data accumulated. */ mp_size_t analyze_dat (int i, int final) { double x, min_x; int j, min_j; /* If the threshold is set at dat[0].size, any positive values are bad. */ x = 0.0; for (j = 0; j < ndat; j++) if (dat[j].d > 0.0) x += dat[j].d; if (option_trace >= 2 && final) { printf ("\n"); printf ("x is the sum of the badness from setting thresh at given size\n"); printf (" (minimum x is sought)\n"); printf ("i=%d size=%ld first x=%.4f\n", i, dat[j].size, x); } min_x = x; min_j = 0; /* When stepping to the next dat[j].size, positive values are no longer bad (so subtracted), negative values become bad (so add the absolute value, meaning subtract). */ for (j = 0; j < ndat; x -= dat[j].d, j++) { if (option_trace >= 2 && final) printf ("i=%d size=%ld x=%.4f\n", i, dat[j].size, x); if (x < min_x) { min_x = x; min_j = j; } } return min_j; } double tuneup_measure (speed_function_t fun, struct speed_params *s) { static mp_ptr xp, yp; double t; TMP_DECL (marker); TMP_MARK (marker); s->xp = SPEED_TMP_ALLOC_LIMBS (s->size, 0); s->yp = SPEED_TMP_ALLOC_LIMBS (s->size, 0); mpn_random (s->xp, s->size); mpn_random (s->yp, s->size); t = speed_measure (fun, s); TMP_FREE (marker); return t; } void print_define (const char *name, mp_size_t value) { printf ("#ifndef %s\n", name); printf ("#define %-23s ", name); if (value == MP_SIZE_T_MAX) printf ("MP_SIZE_T_MAX\n"); else printf ("%5ld\n", value); printf ("#endif\n"); } /* table[i+1] needs to be set to a sensible value when testing method i+1 because mpn_mul_n uses TOOM3_MUL_THRESHOLD to size the temporary workspace for mpn_kara_mul_n. */ void one (speed_function_t function, mp_size_t table[], size_t max_table, struct param_t *param) { static struct param_t dummy; int i; if (param == NULL) param = &dummy; #define DEFAULT(x,n) if (param->x == 0) param->x = (n); DEFAULT (stop_since_change, 80); DEFAULT (min_size, 10); for (i = 0; i < numberof (param->max_size); i++) DEFAULT (max_size[i], MAX_SIZE); s.size = param->min_size; for (i = 0; i < max_table && s.size < MAX_SIZE; i++) { int since_positive, since_thresh_change; int thresh_idx, new_thresh_idx; ndat = 0; since_positive = 0; since_thresh_change = 0; thresh_idx = 0; if (option_trace >= 2) { printf (" algorithm-A algorithm-B ratio possible\n"); printf (" (seconds) (seconds) diff thresh\n"); } for ( ; s.size < MAX_SIZE; s.size += MAX ((mp_size_t) floor (s.size * STEP_FACTOR), 1)) { double ti, tiplus1, d; /* If there's a size limit and it's reached then it should still be sensible to analyze the data since we want the threshold put either at or near the limit. */ if (s.size >= param->max_size[i]) { if (option_trace) printf ("Reached maximum size (%ld) without otherwise stopping\n", param->max_size[i]); break; } /* FIXME: check minimum size requirements are met, possibly by just checking for the -1 returns from the speed functions. if (s.size < MPN_TOOM_TABLE_TO_MINSIZE (i)) continue; */ /* using method i at this size */ table[i] = s.size+1; table[i+1] = MAX_SIZE; ti = tuneup_measure (function, &s); if (ti == -1.0) abort (); /* using method i+1 at this size */ table[i] = s.size; table[i+1] = s.size+1; tiplus1 = tuneup_measure (function, &s); if (tiplus1 == -1.0) abort (); /* Calculate the fraction by which the one or the other routine is slower. */ if (tiplus1 >= ti) d = (tiplus1 - ti) / tiplus1; /* negative */ else d = (tiplus1 - ti) / ti; /* positive */ add_dat (s.size, d); new_thresh_idx = analyze_dat (i, 0); if (option_trace >= 2) printf ("i=%d size=%ld %.9f %.9f % .4f %c %d\n", i, s.size, ti, tiplus1, d, ti > tiplus1 ? '#' : ' ', dat[new_thresh_idx].size); /* Stop if the last time method i was faster was more than a certain number of measurements ago. */ #define STOP_SINCE_POSITIVE 200 if (d >= 0) since_positive = 0; else if (++since_positive > STOP_SINCE_POSITIVE) { if (option_trace >= 1) printf ("i=%d stopped due to since_positive (%d)\n", i, STOP_SINCE_POSITIVE); break; } /* Stop if method i has become slower by a certain factor. */ #define STOP_FACTOR 1.2 if (ti >= tiplus1 * STOP_FACTOR) { if (option_trace >= 1) printf ("i=%d stopped due to ti >= tiplus1 * factor (%.1f)\n", i, STOP_FACTOR); break; } /* Stop if the threshold implied hasn't changed in a certain number of measurements. (It's this condition that ususally stops the loop.) */ if (thresh_idx != new_thresh_idx) since_thresh_change = 0, thresh_idx = new_thresh_idx; else if (++since_thresh_change > param->stop_since_change) { if (option_trace >= 1) printf ("i=%d stopped due to since_thresh_change (%d)\n", i, param->stop_since_change); break; } /* Stop if the threshold implied is more than a certain number of measurements ago. */ #define STOP_SINCE_AFTER 500 if (ndat - thresh_idx > STOP_SINCE_AFTER) { if (option_trace >= 1) printf ("i=%d stopped due to ndat - thresh_idx > amount (%d)\n", i, STOP_SINCE_AFTER); break; } } /* Stop when the size limit is reached before the end of the crossover, without a specified param->max_size[i]. */ if (s.size >= MAX_SIZE) { fprintf (stderr, "%s\n", param->name[i]); fprintf (stderr, "i=%d sizes %ld to %ld total %d measurements\n", i, dat[0].size, dat[ndat-1].size, ndat); fprintf (stderr, " max size reached before end of crossover\n"); break; } if (option_trace >= 1) printf ("i=%d sizes %ld to %ld total %d measurements\n", i, dat[0].size, dat[ndat-1].size, ndat); if (ndat == 0) break; table[i] = dat[analyze_dat (i, 1)].size; print_define (param->name[i], table[i]); /* Look for the next threshold starting from the current one, but back a bit. */ s.size = table[i]+1; } } /* Special probing for the fft thresholds. The size restrictions on the FFTs mean the graph of time vs size has a step effect. See this for example using ./speed -s 4096-16384 -t 128 -P foo mpn_mul_fft.8 mpn_mul_fft.9 gnuplot foo.gnuplot The current approach is to compare routines at the midpoint of relevant steps. Arguably a more sophisticated system of threshold data is wanted if this step effect remains. */ struct fft_param_t { const char *table_name; const char *threshold_name; const char *modf_threshold_name; mp_size_t *p_threshold; mp_size_t *p_modf_threshold; mp_size_t first_size; mp_size_t max_size; speed_function_t function; speed_function_t mul_function; mp_size_t sqr; }; /* mpn_mul_fft requires pl a multiple of 2^k limbs, but with N=pl*BIT_PER_MP_LIMB it internally also pads out so N/2^k is a multiple of 2^(k-1) bits. */ mp_size_t fft_step_size (int k) { if (2*k-1 > BITS_PER_INT) { printf ("Can't handle k=%d\n", k); abort (); } return (1<", k, m, pl); */ if (pl == 0 || (pl & (m-1)) != 0) pl = (pl | (m-1)) + 1; /* printf (" %ld\n", pl); */ return pl; } void fft (struct fft_param_t *p) { mp_size_t size; int i, k; for (i = 0; i < numberof (mpn_fft_table[p->sqr]); i++) mpn_fft_table[p->sqr][i] = MP_SIZE_T_MAX; *p->p_threshold = MP_SIZE_T_MAX; *p->p_modf_threshold = MP_SIZE_T_MAX; option_trace = MAX (option_trace, option_fft_trace); printf ("#ifndef %s\n", p->table_name); printf ("#define %s {", p->table_name); if (option_trace >= 2) printf ("\n"); k = FFT_FIRST_K; size = p->first_size; for (;;) { double tk, tk1; size = fft_next_size (size+1, k+1); if (size >= p->max_size) break; if (k >= FFT_FIRST_K + numberof (mpn_fft_table[p->sqr])) break; usleep(10000); /* compare k to k+1 in the middle of the current k+1 step */ s.size = size + fft_step_size (k+1) / 2; s.r = k; tk = tuneup_measure (p->function, &s); if (tk == -1.0) abort (); usleep(10000); s.r = k+1; tk1 = tuneup_measure (p->function, &s); if (tk1 == -1.0) abort (); if (option_trace >= 2) printf ("at %ld size=%ld k=%d %.9lf k=%d %.9lf\n", size, s.size, k, tk, k+1, tk1); /* declare the k+1 threshold as soon as it's faster at its midpoint */ if (tk1 < tk) { mpn_fft_table[p->sqr][k-FFT_FIRST_K] = s.size; printf (" %ld,", s.size); if (option_trace >= 2) printf ("\n"); k++; } } mpn_fft_table[p->sqr][k-FFT_FIRST_K] = 0; printf (" 0 }\n"); printf ("#endif\n"); size = p->first_size; /* Declare an FFT faster than a plain toom3 etc multiplication found as soon as one faster measurement obtained. A multiplication in the middle of the FFT step is tested. */ for (;;) { int modf = (*p->p_modf_threshold == MP_SIZE_T_MAX); double tk, tm; /* k=7 should be the first FFT which can beat toom3 on a full multiply, so jump to that threshold and save some probing after the modf threshold is found. */ if (!modf && size < mpn_fft_table[p->sqr][2]) { size = mpn_fft_table[p->sqr][2]; if (option_trace >= 2) printf ("jump to size=%ld\n", size); } size = fft_next_size (size+1, mpn_fft_best_k (size, p->sqr)); k = mpn_fft_best_k (size, p->sqr); if (size >= p->max_size) break; usleep(10000); s.size = size + fft_step_size (k) / 2; s.r = k; tk = tuneup_measure (p->function, &s); if (tk == -1.0) abort (); usleep(10000); if (!modf) s.size /= 2; tm = tuneup_measure (p->mul_function, &s); if (tm == -1.0) abort (); if (option_trace >= 2) printf ("at %ld size=%ld k=%d %.9lf size=%ld %s mul %.9lf\n", size, size + fft_step_size (k) / 2, k, tk, s.size, modf ? "modf" : "full", tm); if (tk < tm) { if (modf) { *p->p_modf_threshold = s.size; print_define (p->modf_threshold_name, *p->p_modf_threshold); } else { *p->p_threshold = s.size; print_define (p->threshold_name, *p->p_threshold); break; } } } } void all (void) { TMP_DECL (marker); TMP_MARK (marker); s.xp_block = SPEED_TMP_ALLOC_LIMBS (SPEED_BLOCK_SIZE, 0); s.yp_block = SPEED_TMP_ALLOC_LIMBS (SPEED_BLOCK_SIZE, 0); speed_time_init (); fprintf (stderr, "speed_precision %d, speed_unittime %.2e\n", speed_precision, speed_unittime); fprintf (stderr, "MAX_SIZE %ld, fft_max_size %ld, STEP_FACTOR %.3f\n", MAX_SIZE, option_fft_max_size, STEP_FACTOR); fprintf (stderr, "\n"); { struct tm *tp; time_t t; time (&t); tp = localtime (&t); printf ("/* Generated by tuneup.c, %d-%02d-%02d. */\n\n", tp->tm_year+1900, tp->tm_mon+1, tp->tm_mday); } { static struct param_t param; param.name[0] = "KARATSUBA_MUL_THRESHOLD"; param.name[1] = "TOOM3_MUL_THRESHOLD"; param.max_size[1] = TOOM3_MUL_THRESHOLD_LIMIT; one (speed_mpn_mul_n, mul_threshold, numberof(mul_threshold)-1, ¶m); } printf("\n"); { static struct param_t param; param.name[0] = "KARATSUBA_SQR_THRESHOLD"; param.name[1] = "TOOM3_SQR_THRESHOLD"; param.max_size[0] = KARATSUBA_SQR_MAX; one (speed_mpn_sqr_n, sqr_threshold, numberof(sqr_threshold)-1, ¶m); } printf("\n"); { static struct param_t param; param.name[0] = "BZ_THRESHOLD"; one (speed_mpn_bz_tdiv_qr, bz_threshold, 1, ¶m); } printf("\n"); { static struct param_t param; param.name[0] = "FIB_THRESHOLD"; one (speed_mpz_fib_ui, fib_threshold, 1, ¶m); } printf("\n"); /* mpz_powm becomes slow before long, so stop soon after the determined threshold stops changing. */ { static struct param_t param; param.name[0] = "POWM_THRESHOLD"; param.stop_since_change = 15; one (speed_mpz_powm, powm_threshold, 1, ¶m); } printf("\n"); { static struct param_t param; param.name[0] = "GCD_ACCEL_THRESHOLD"; param.min_size = 1; one (speed_mpn_gcd, gcd_accel_threshold, 1, ¶m); } { static struct param_t param; param.name[0] = "GCDEXT_THRESHOLD"; param.min_size = 1; param.max_size[0] = 200; one (speed_mpn_gcdext, gcdext_threshold, 1, ¶m); } printf("\n"); if (option_fft_max_size != 0) { { static struct fft_param_t param; param.table_name = "FFT_MUL_TABLE"; param.threshold_name = "FFT_MUL_THRESHOLD"; param.p_threshold = &FFT_MUL_THRESHOLD; param.modf_threshold_name = "FFT_MODF_MUL_THRESHOLD"; param.p_modf_threshold = &FFT_MODF_MUL_THRESHOLD; param.first_size = TOOM3_MUL_THRESHOLD / 2; param.max_size = option_fft_max_size; param.function = speed_mpn_mul_fft; param.mul_function = speed_mpn_mul_n; param.sqr = 0; fft (¶m); } printf("\n"); { static struct fft_param_t param; param.table_name = "FFT_SQR_TABLE"; param.threshold_name = "FFT_SQR_THRESHOLD"; param.p_threshold = &FFT_SQR_THRESHOLD; param.modf_threshold_name = "FFT_MODF_SQR_THRESHOLD"; param.p_modf_threshold = &FFT_MODF_SQR_THRESHOLD; param.first_size = TOOM3_SQR_THRESHOLD / 2; param.max_size = option_fft_max_size; param.function = speed_mpn_mul_fft_sqr; param.mul_function = speed_mpn_sqr_n; param.sqr = 0; fft (¶m); } printf ("\n"); } TMP_FREE (marker); } int main (int argc, char *argv[]) { int opt; /* Unbuffered so if output is redirected to a file it isn't lost if the program is killed part way through. */ setbuf (stdout, NULL); setbuf (stderr, NULL); while ((opt = getopt(argc, argv, "f:o:p:t")) != EOF) { switch (opt) { case 'f': if (optarg[0] == 't') option_fft_trace = 2; else option_fft_max_size = atol (optarg); break; case 'o': speed_option_set (optarg); break; case 'p': speed_precision = atoi (optarg); break; case 't': option_trace++; break; case '?': exit(1); } } all (); return 0; }