/* $Id: thue.c,v 1.12 2001/10/01 12:11:34 karim Exp $ Copyright (C) 2000 The PARI group. This file is part of the PARI/GP package. PARI/GP is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation. It is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY WHATSOEVER. Check the License for details. You should have received a copy of it, along with the package; see the file 'COPYING'. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* Thue equation solver. In all the forthcoming remarks, "paper" * designs the paper "Thue Equations of High Degree", by Yu. Bilu and * G. Hanrot, J. Number Theory (1996). Note that numbering of the constants * is that of Hanrot's thesis rather than that of the paper. * The last part of the program (bnfisintnorm) was written by K. Belabas. */ #include "pari.h" static int curne,r,s,t,deg,Prec,ConstPrec,numroot; static GEN c1,c2,c3,c4,c5,c6,c7,c8,c10,c11,c12,c13,c14,c15,B0,x1,x2,x3,x0; static GEN halpha,eps3,gdeg,A,MatNE,roo,MatFU,Delta,Lambda,delta,lambda; static GEN Vect2,SOL,uftot; GEN bnfisintnorm(GEN, GEN); /* Check whether tnf is a valid structure */ static int checktnf(GEN tnf) { if (typ(tnf)!=t_VEC || (lg(tnf)!=8 && lg(tnf)!=3)) return 0; if (typ(tnf[1])!=t_POL) return 0; if (lg(tnf) != 8) return 1; /* s=0 */ deg=degpol(tnf[1]); if (deg<=2) err(talker,"invalid polynomial in thue (need deg>2)"); s=sturm((GEN)tnf[1]); t=(deg-s)>>1; r=s+t-1; (void)checkbnf((GEN)tnf[2]); if (typ(tnf[3]) != t_COL || lg(tnf[3]) != deg+1) return 0; if (typ(tnf[4]) != t_COL || lg(tnf[4]) != r+1) return 0; if (typ(tnf[5]) != t_MAT || lg(tnf[5]) != r+1 || lg(gmael(tnf,5,1)) != deg+1) return 0; if (typ(tnf[6]) != t_MAT || lg(tnf[6])!=r+1 || lg(gmael(tnf,6,1)) != r+1) return 0; if (typ(tnf[7]) != t_VEC || lg(tnf[7]) != 7) return 0; return 1; } static GEN distoZ(GEN z) { GEN p1=gfrac(z); return gmin(p1, gsub(gun,p1)); } /* Check whether a solution has already been found */ static int _thue_new(GEN zz) { int i; for (i=1; i=2) fprintferr("c1 = %Z\nc2 = %Z\n", c1, c2); } /* Computation of M, its inverse A and check of the precision (see paper) */ static void T_A_Matrices(void) { GEN mask, eps1, eps2, nia, m1, IntM; int i,j; m1=glog(gabs(MatFU,Prec),Prec); mask=gsub(gpui(gdeux,stoi(r),Prec),gun); m1=matextract(m1,mask,mask); A=invmat(m1); IntM=gsub(gmul(A,m1),idmat(r)); eps2=gzero; for (i=1; i<=r; i++) for (j=1; j<=r; j++) if (gcmp(eps2,gabs(gcoeff(IntM,i,j),20)) == -1) eps2=gabs(gcoeff(IntM,i,j),20); eps1=gpui(gdeux,stoi((Prec-2)*32),Prec); eps2=gadd(eps2,ginv(eps1)); nia=gzero; for (i=1; i<=r; i++) for (j=1; j<=r; j++) if (gcmp(nia,gabs(gcoeff(A,i,j),20)) == -1) nia = gabs(gcoeff(A,i,j),20); /* Check for the precision in matrix inversion. See paper, Lemma 2.4.2. */ if (gcmp(gmul(gadd(gmul(stoi(r),gmul(nia,eps1)),eps2), gmul(gdeux,stoi(r))),gun) == -1) err(precer,"thue"); eps3=gmul(gdeux,gmul(gmul(gsqr(stoi(r)),nia), gadd(gmul(stoi(r),gdiv(nia,eps1)),eps2))); myround(eps3,gun); if (DEBUGLEVEL>=2) fprintferr("epsilon_3 -> %Z\n",eps3); } /* Computation of the constants c5, c7, c10, c12, c15 */ static void ComputeConstants(void) { int k; GEN Vect; Vect=cgetg(r+1,t_COL); for (k=1; k<=r; k++) Vect[k]=un; if (numroot <= r) Vect[numroot]=lsub(gun,gdeg); Delta=gmul(A,Vect); c5=(GEN)(gabs(Delta,Prec)[Vecmax(gabs(Delta,Prec),r)]); c5=myround(c5,gun); c7=mulsr(r,c5); c10=divsr(deg,c7); c13=divsr(deg,c5); if (DEBUGLEVEL>=2) { fprintferr("c5 = %Z\n",c5); fprintferr("c7 = %Z\n",c7); fprintferr("c10 = %Z\n",c10); fprintferr("c13 = %Z\n",c13); } } /* Computation of the constants c6, c8, c9 */ static void ComputeConstants2(GEN poly, GEN rhs) { GEN Vect1, tmp; int k; Vect1=cgetg(r+1,t_COL); for (k=1; k<=r; k++) Vect1[k]=un; Vect1=gmul(gabs(A,ConstPrec),Vect1); Vect2=cgetg(r+1,t_COL); for (k=1; k<=r; k++) { if (k!=numroot) { Vect2[k]=llog(gabs(gdiv(gsub((GEN)roo[numroot],(GEN)roo[k]), gcoeff(MatNE,k,curne)),Prec),Prec); } else { Vect2[k]=llog(gabs(gdiv(rhs,gmul(poleval(derivpol(poly) ,(GEN)roo[numroot]), gcoeff(MatNE,k,curne))),Prec),Prec); } } Lambda=gmul(A,Vect2); tmp=(GEN)Vect1[Vecmax(Vect1,r)]; x2=gmax(x1,gpui(mulsr(10,mulrr(c4,tmp)),ginv(gdeg),ConstPrec)); c14=mulrr(c4,tmp); c6=gabs((GEN)Lambda[Vecmax(gabs(Lambda,ConstPrec),r)],ConstPrec); c6=addrr(c6,dbltor(0.1)); c6=myround(c6,gun); c8=addrr(dbltor(1.23),mulsr(r,c6)); c11=mulrr(mulsr(2,c3),gexp(divrr(mulsr(deg,c8),c7),ConstPrec)); tmp=gexp(divrr(mulsr(deg,c6),c5),ConstPrec); c12=mulrr(mulsr(2,c3),tmp); c15=mulsr(2,mulrr(c14,tmp)); if (DEBUGLEVEL>=2) { fprintferr("c6 = %Z\n",c6); fprintferr("c8 = %Z\n",c8); fprintferr("c11 = %Z\n",c11); fprintferr("c12 = %Z\n",c12); fprintferr("c14 = %Z\n",c14); fprintferr("c15 = %Z\n",c15); } } /* Computation of the logarithmic heights of the units */ static GEN Logarithmic_Height(int s) { int i; GEN LH=gun,mat; mat=gabs(MatFU,Prec); for (i=1; i<=deg; i++) LH = gmul(LH,gmax(gun,gabs(gcoeff(mat,i,s),Prec))); return gmul(gdeux,gdiv(glog(LH,Prec),gdeg)); } /* Computation of the matrix ((\sigma_i(\eta_j)) used for M_1 and the computation of logarithmic heights */ static void Compute_Fund_Units(GEN uf) { int i,j; MatFU=cgetg(r+1,t_MAT); for (i=1; i<=r; i++) MatFU[i]=lgetg(deg+1,t_COL); for (i=1; i<=r; i++) { if (typ(uf[i])!=t_POL) err(talker,"incorrect system of units"); for (j=1; j<=deg; j++) coeff(MatFU,j,i)=(long)poleval((GEN)uf[i],(GEN)roo[j]); } } /* Computation of the conjugates of the solutions to the norm equation */ static void Conj_Norm_Eq(GEN ne, GEN *Hmu) { int p,q,nesol,x; nesol=lg(ne); MatNE=(GEN)cgetg(nesol,t_MAT); (*Hmu)=cgetg(nesol,t_COL); for (p=1; p=2) fprintferr("Baker -> %Z\nB0 -> %Z\n",c9,B0); } /* Compute delta and lambda */ static void Create_CF_Values(int i1, int i2, GEN *errdelta) { GEN eps5; if (r>1) { delta=divrr((GEN)Delta[i2],(GEN)Delta[i1]); eps5=mulrs(eps3,r); *errdelta=mulrr(addsr(1,delta), divrr(eps5,subrr(gabs((GEN)Delta[i1],ConstPrec),eps5))); lambda=gdiv(gsub(gmul((GEN)Delta[i2],(GEN)Lambda[i1]), gmul((GEN)Delta[i1],(GEN)Lambda[i2])), (GEN)Delta[i1]); } else { GEN Pi2 = gmul2n(mppi(Prec),1); delta=gdiv(gcoeff(MatFU,2,1),gcoeff(MatFU,3,1)); delta=gdiv(garg(delta,Prec),Pi2); *errdelta=gdiv(gpui(gdeux,stoi(-(Prec-2)*32+1),Prec), gabs(gcoeff(MatFU,2,1),Prec)); lambda=gmul(gdiv(gsub((GEN)roo[numroot],(GEN)roo[2]), gsub((GEN)roo[numroot],(GEN)roo[3])), gdiv(gcoeff(MatNE,3,curne),gcoeff(MatNE,2,curne))); lambda=gdiv(garg(lambda,Prec),Pi2); } if (DEBUGLEVEL>=2) outerr(*errdelta); } /* Try to reduce the bound through continued fractions; see paper. */ static int CF_First_Pass(GEN kappa, GEN errdelta) { GEN q,ql,qd,l0; if (gcmp(gmul(dbltor(0.1),gsqr(mulri(B0,kappa))),ginv(errdelta))==1) { return -1; } q=denom(bestappr(delta, mulir(kappa, B0))); ql=mulir(q,lambda); qd=gmul(q,delta); ql=gabs(subri(ql, ground(ql)),Prec); qd=gabs(mulrr(subri(qd,ground(qd)),B0),Prec); l0=subrr(ql,addrr(qd,divri(dbltor(0.1),kappa))); if (signe(l0) <= 0) { if (DEBUGLEVEL>=2) fprintferr("CF_First_Pass failed. Trying again with larger kappa\n"); return 0; } if (r>1) B0=divrr(glog(divrr(mulir(q,c15),l0),ConstPrec),c13); else B0=divrr(glog(divrr(mulir(q,c11),mulrr(l0,gmul2n(mppi(ConstPrec),1))),ConstPrec),c10); if (DEBUGLEVEL>=2) fprintferr("CF_First_Pass successful !!\nB0 -> %Z\n",B0); return 1; } /* Check whether a "potential" solution is truly a solution. */ static void Check_Solutions(GEN xmay1, GEN xmay2, GEN poly, GEN rhs) { GEN xx1, xx2, yy1, yy2, zz, u; yy1=ground(greal(gdiv(gsub(xmay2,xmay1), gsub((GEN)roo[1],(GEN)roo[2])))); yy2=gneg(yy1); xx1=greal(gadd(xmay1,gmul((GEN)roo[1],yy1))); xx2=gneg(xx1); if (gcmp(distoZ(xx1),dbltor(0.0001))==-1) { xx1=ground(xx1); if (!gcmp0(yy1)) { if (gegal(gmul(poleval(poly,gdiv(xx1,yy1)), gpui(yy1,gdeg,Prec)),(GEN)rhs)) { zz=cgetg(2,t_VEC); u=cgetg(3,t_VEC); u[1]=(long)xx1; u[2]=(long)yy1; zz[1]=(long)u; if (_thue_new(u)) SOL=concatsp(SOL,zz); } } else if (gegal(gpui(xx1,gdeg,Prec),(GEN)rhs)) { zz=cgetg(2,t_VEC); u=cgetg(3,t_VEC); u[1]=(long)xx1; u[2]=(long)gzero; zz[1]=(long)u; if (_thue_new(u)) SOL=concatsp(SOL,zz); } xx2=ground(xx2); if (!gcmp0(yy2)) { if (gegal(gmul(poleval(poly,gdiv(xx2,yy2)), gpui(yy2,gdeg,Prec)),(GEN)rhs)) { zz=cgetg(2,t_VEC); u=cgetg(3,t_VEC); u[1]=(long)xx2; u[2]=(long)yy2; zz[1]=(long)u; if (_thue_new(u)) SOL=concatsp(SOL,zz); } } else if (gegal(gpui(xx2,gdeg,Prec),(GEN)rhs)) { zz=cgetg(2,t_VEC); u=cgetg(3,t_VEC); u[1]=(long)xx2; u[2]=(long)gzero; zz[1]=(long)u; if (_thue_new(u)) SOL=concatsp(SOL,zz); } } } static GEN GuessQi(GEN *q1, GEN *q2, GEN *q3) { GEN C, Lat, eps; C=gpui(stoi(10),stoi(10),Prec); Lat=idmat(3); mael(Lat,1,3)=(long)C; mael(Lat,2,3)=lround(gmul(C,delta)); mael(Lat,3,3)=lround(gmul(C,lambda)); Lat=lllint(Lat); *q1=gmael(Lat,1,1); *q2=gmael(Lat,1,2); *q3=gmael(Lat,1,3); eps=gabs(gadd(gadd(*q1,gmul(*q2,delta)),gmul(*q3,lambda)),Prec); return(eps); } static void TotRat(void) { err(bugparier,"thue (totally rational case)"); } /* Check for solutions under a small bound (see paper) */ static void Check_Small(int bound, GEN poly, GEN rhs) { GEN interm, xx, zz, u, maxr, tmp, ypot, xxn, xxnm1, yy; long av = avma, lim = stack_lim(av,1); int x, j, bsupy, y; double bndyx; maxr=gabs((GEN)roo[1],Prec); for(j=1; j<=deg; j++) { if(gcmp(tmp=gabs((GEN)roo[j],Prec),maxr)==1) maxr=tmp; } bndyx=gtodouble(gadd(gpui(gabs(rhs,Prec),ginv(gdeg),Prec),maxr)); for (x=-bound; x<=bound; x++) { if (low_stack(lim,stack_lim(av,1))) { if(DEBUGMEM>1) err(warnmem,"Check_small"); SOL = gerepilecopy(av, SOL); } if (x==0) { ypot=gmul(stoi(gsigne(rhs)),ground(gpui(gabs(rhs,0),ginv(gdeg),Prec))); if (gegal(gpui(ypot,gdeg,0),rhs)) { zz=cgetg(2,t_VEC); u=cgetg(3,t_VEC); u[1]=(long)ypot; u[2]=(long)gzero; zz[1]=(long)u; if (_thue_new(u)) SOL=concatsp(SOL,zz); } if (gegal(gpui(gneg(ypot),gdeg,0),rhs)) { zz=cgetg(2,t_VEC); u=cgetg(3,t_VEC); u[1]=(long)gneg(ypot); u[2]=(long)gzero; zz[1]=(long)u; if (_thue_new(u)) SOL=concatsp(SOL,zz); } } else { bsupy=(int)(x>0?bndyx*x:-bndyx*x); xx=stoi(x); xxn=gpui(xx,gdeg,Prec); interm=gsub((GEN)rhs,gmul(xxn,(GEN)poly[2])); /* Verifier ... */ xxnm1=xxn; j=2; while(gcmp0(interm)) { xxnm1=gdiv(xxnm1,xx); interm=gmul((GEN)poly[++j],xxnm1); } for(y=-bsupy; y<=bsupy; y++) { yy=stoi(y); if(y==0) { if (gegal(gmul((GEN)poly[2],xxn),rhs)) { zz=cgetg(2,t_VEC); u=cgetg(3,t_VEC); u[1]=(long)gzero; u[2]=(long)xx; zz[1]=(long)u; if (_thue_new(u)) SOL=concatsp(SOL,zz); } } else if (gcmp0(gmod(interm,yy))) if(gegal(poleval(poly,gdiv(yy,xx)),gdiv(rhs,xxn))) /* Remplacer par un eval *homogene* */ { zz=cgetg(2,t_VEC); u=cgetg(3,t_VEC); u[1]=(long)yy; u[2]=(long)xx; zz[1]=(long)u; if (_thue_new(u)) SOL=concatsp(SOL,zz); } } } } } /* Computes [x]! */ static double fact(double x) { double ft=1.0; x=(int)x; while (x>1) { ft*=x; x--; } return ft ; } /* From a polynomial and optionally a system of fundamental units for the * field defined by poly, computes all the relevant constants needed to solve * the equation P(x,y)=a whenever the solutions of N_{ K/Q }(x)=a. Returns a * "tnf" structure containing * 1) the polynomial * 2) the bnf (used to solve the norm equation) * 3) roots, with presumably enough precision * 4) The logarithmic heights of units * 5) The matrix of conjugates of units * 6) its inverse * 7) a few technical constants */ GEN thueinit(GEN poly, long flag, long prec) { GEN thueres,ALH,csts,c0; ulong av = avma; long k,st; double d,dr; uftot = NULL; if (checktnf(poly)) { uftot=(GEN)poly[2]; poly=(GEN)poly[1]; } else if (typ(poly)!=t_POL) err(notpoler,"thueinit"); if (degpol(poly)<=2) err(talker,"invalid polynomial in thue (need deg>2)"); if (!gisirreducible(poly)) err(redpoler,"thueinit"); st=sturm(poly); if (st) { dr=(double)((st+lgef(poly)-5)>>1); d=(double)degpol(poly); d=d*(d-1)*(d-2); /* Try to guess the precision by approximating Baker's bound. * Note that the guess is most of the time pretty generous, * ie 10 to 30 decimal digits above what is *really* necessary. * Note that the limiting step is the reduction. See paper. */ Prec=3 + (long)((5.83 + (dr+4)*5 + log(fact(dr+3)) + (dr+3)*log(dr+2) + (dr+3)*log(d) + log(log(2*d*(dr+2))) + (dr+1)) / 10.); ConstPrec=4; if (Prec=2) fprintferr("x1 -> %Z\n",x1); c3=mulrr(dbltor(1.39),tmp); c4=mulsr(deg-1,c3); for (numroot=1; numroot<=s; numroot++) { ComputeConstants(); Conj_Norm_Eq(ne,&Hmu); for (curne=1; curne=2) fprintferr("Entering CF\n"); Old_B0=gmul(B0,gdeux); /* Try to reduce B0 while * 1) there was less than 10 reductions * 2) the previous reduction improved the bound of more than 0.1. */ while (Nb_It<10 && gcmp(Old_B0,gadd(B0,dbltor(0.1))) == 1 && fs<2) { cf=0; Old_B0=B0; Nb_It++; Kstart=stoi(10); while (!fs && CF_First_Pass(Kstart,errdelta) == 0 && cf < 8 ) { cf++; Kstart=mulis(Kstart,10); } if ( CF_First_Pass(Kstart,errdelta) == -1 ) { ne = gerepilecopy(av, ne); Prec+=10; if(DEBUGLEVEL>=2) fprintferr("Increasing precision\n"); thueres=thueinit(thueres,0,Prec); return(thue(thueres,rhs,ne)); } if (cf==8 || fs) /* Semirational or totally rational case */ { if (!fs) { ep=GuessQi(&q1,&q2,&q3); } bd=gmul(denom(bestappr(delta,gadd(B0,gabs(q2,Prec)))) ,delta); bd=gabs(gsub(bd,ground(bd)),Prec); if(gcmp(bd,ep)==1 && !gcmp0(q3)) { fs=1; B0=gdiv(glog(gdiv(gmul(q3,c15),gsub(bd,ep)), Prec),c13); if (DEBUGLEVEL>=2) fprintferr("Semirat. reduction ok. B0 -> %Z\n",B0); } else fs=2; } else fs=0; Nb_It=0; B0=gmin(Old_B0,B0); upb=gtolong(gceil(B0)); } i2++; if (i2==i1) i2++; } while (fs == 2 && i2 <= r); if (fs == 2) TotRat(); if (DEBUGLEVEL >=2) fprintferr("x2 -> %Z\n",x2); /* For each possible value of b_i1, compute the b_i's * and 2 conjugates of x-\alpha y. Then check. */ zp1=dbltor(0.01); x3=gmax(x2,gpui(mulsr(2,divrr(c14,zp1)),ginv(gdeg),ConstPrec)); for (bi1=-upb; bi1<=upb; bi1++) { flag=1; xmay1=gun; xmay2=gun; for (i=1; i<=r; i++) { b[i]=(long)gdiv(gsub(gmul((GEN)Delta[i],stoi(bi1)), gsub(gmul((GEN)Delta[i],(GEN)Lambda[i1]), gmul((GEN)Delta[i1],(GEN)Lambda[i]))), (GEN)Delta[i1]); if (gcmp(distoZ((GEN)b[i]),zp1)==1) { flag=0; break; } } if(flag) { for(i=1; i<=r; i++) { b[i]=lround((GEN)b[i]); xmay1=gmul(xmay1,gpui(gcoeff(MatFU,1,i),(GEN)b[i],Prec)); xmay2=gmul(xmay2,gpui(gcoeff(MatFU,2,i),(GEN)b[i],Prec)); } xmay1=gmul(xmay1,gcoeff(MatNE,1,curne)); xmay2=gmul(xmay2,gcoeff(MatNE,2,curne)); Check_Solutions(xmay1,xmay2,poly,rhs); } } } } if (DEBUGLEVEL>=2) fprintferr("Checking for small solutions\n"); Check_Small((int)(gtodouble(x3)),poly,rhs); return gerepilecopy(av,SOL); } /* Case s=0. All the solutions are "small". */ Prec=DEFAULTPREC; poly=(GEN)thueres[1]; deg=degpol(poly); gdeg=stoi(deg); c0=(GEN)thueres[2]; roo=roots(poly,Prec); Check_Small(gtolong(ground(gpui(gmul((GEN)poly[2],gdiv(gabs(rhs,Prec),c0)), ginv(gdeg),Prec) )), poly, rhs); return gerepilecopy(av,SOL); } static GEN *Relations; /* primes above a, expressed on generators of Cl(K) */ static GEN *Partial; /* list of vvectors, Partial[i] = Relations[1..i] * u[1..i] */ static GEN *gen_ord; /* orders of generators of Cl(K) given in bnf */ static long *f; /* f[i] = f(Primes[i]/p), inertial degree */ static long *n; /* a = prod p^{ n_p }. n[i]=n_p if Primes[i] divides p */ static long *inext; /* index of first P above next p, 0 if p is last */ static long *S; /* S[i] = n[i] - sum_{ 1<=k<=i } f[k].u[k] */ static long *u; /* We want principal ideals I = prod Primes[i]^u[i] */ static long **normsol; /* lists of copies of the u[] which are solutions */ static long Nprimes; /* length(Relations) = #{max ideal above divisors of a} */ static long sindex, smax; /* current index in normsol; max. index */ /* u[1..i] has been filled. Norm(u) is correct. * Check relations in class group then save it. */ static void test_sol(long i) { long k,*sol; if (Partial) { long av=avma; for (k=1; k 2) { fprintferr("sol = %Z\n",sol); if (Partial) fprintferr("Partial = %Z\n",Partial); flusherr(); } } static void fix_Partial(long i) { long k, av = avma; for (k=1; k1 && j<=ldec; j++) gcd = cgcd(gcd,itos(gmael(dec,j,4))); gcdlist[i]=gcd; if (gcd != 1 && smodis(gmael(fact,2,i),gcd)) { if (DEBUGLEVEL>2) { fprintferr("gcd f_P does not divide n_p\n"); flusherr(); } return; } Fact[i] = dec; Nprimes += ldec; } f = new_chunk(1+Nprimes); u = new_chunk(1+Nprimes); n = new_chunk(1+Nprimes); S = new_chunk(1+Nprimes); inext = new_chunk(1+Nprimes); Primes = (GEN*) new_chunk(1+Nprimes); *ptPrimes = Primes; if (Ngen) { Partial = (GEN*) new_chunk(1+Nprimes); Relations = (GEN*) new_chunk(1+Nprimes); } else /* trivial class group, no relations to check */ Relations = Partial = NULL; j=0; for (i=1; i<=nprimes; i++) { long k,lim,v, vn=itos(gmael(fact,2,i)); gcd = gcdlist[i]; dec = Fact[i]; lim = lg(dec); v = (i==nprimes)? 0: j + lim; for (k=1; k < lim; k++) { j++; Primes[j] = (GEN)dec[k]; f[j] = itos(gmael(dec,k,4)) / gcd; n[j] = vn / gcd; inext[j] = v; if (Partial) Relations[j] = isprincipal(bnf,Primes[j]); } } if (Partial) { for (i=1; i <= Nprimes; i++) if (!gcmp0(Relations[i])) break; if (i > Nprimes) Partial = NULL; /* all ideals dividing a are principal */ } if (Partial) for (i=0; i<=Nprimes; i++) /* Partial[0] needs to be initialized */ { Partial[i]=cgetg(Ngen+1,t_COL); for (j=1; j<=Ngen; j++) { Partial[i][j]=lgeti(4); gaffect(gzero,(GEN) Partial[i][j]); } } smax=511; normsol = (long**) new_chunk(smax+1); S[0]=n[1]; inext[0]=1; isintnorm_loop(0); } static long get_unit_1(GEN bnf, GEN pol, GEN *unit) { GEN fu; long j; if (DEBUGLEVEL > 2) fprintferr("looking for a fundamental unit of norm -1\n"); *unit = gmael3(bnf,8,4,2); /* torsion unit */ if (signe( gnorm(gmodulcp(*unit,pol)) ) < 0) return 1; fu = gmael(bnf,8,5); /* fundamental units */ for (j=1; j 2) fprintferr("%Z eliminated because of sign\n",x); x = NULL; } } if (x) res = concatsp(res, gmod(x,pol)); } return gerepilecopy(av,res); }