/* * Copyright (c) 1994-2000 FUJITSU LABORATORIES LIMITED * All rights reserved. * * FUJITSU LABORATORIES LIMITED ("FLL") hereby grants you a limited, * non-exclusive and royalty-free license to use, copy, modify and * redistribute, solely for non-commercial and non-profit purposes, the * computer program, "Risa/Asir" ("SOFTWARE"), subject to the terms and * conditions of this Agreement. For the avoidance of doubt, you acquire * only a limited right to use the SOFTWARE hereunder, and FLL or any * third party developer retains all rights, including but not limited to * copyrights, in and to the SOFTWARE. * * (1) FLL does not grant you a license in any way for commercial * purposes. You may use the SOFTWARE only for non-commercial and * non-profit purposes only, such as academic, research and internal * business use. * (2) The SOFTWARE is protected by the Copyright Law of Japan and * international copyright treaties. If you make copies of the SOFTWARE, * with or without modification, as permitted hereunder, you shall affix * to all such copies of the SOFTWARE the above copyright notice. * (3) An explicit reference to this SOFTWARE and its copyright owner * shall be made on your publication or presentation in any form of the * results obtained by use of the SOFTWARE. * (4) In the event that you modify the SOFTWARE, you shall notify FLL by * e-mail at risa-admin@sec.flab.fujitsu.co.jp of the detailed specification * for such modification or the source code of the modified part of the * SOFTWARE. * * THE SOFTWARE IS PROVIDED AS IS WITHOUT ANY WARRANTY OF ANY KIND. FLL * MAKES ABSOLUTELY NO WARRANTIES, EXPRESSED, IMPLIED OR STATUTORY, AND * EXPRESSLY DISCLAIMS ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS * FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF THIRD PARTIES' * RIGHTS. NO FLL DEALER, AGENT, EMPLOYEES IS AUTHORIZED TO MAKE ANY * MODIFICATIONS, EXTENSIONS, OR ADDITIONS TO THIS WARRANTY. * UNDER NO CIRCUMSTANCES AND UNDER NO LEGAL THEORY, TORT, CONTRACT, * OR OTHERWISE, SHALL FLL BE LIABLE TO YOU OR ANY OTHER PERSON FOR ANY * DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE OR CONSEQUENTIAL * DAMAGES OF ANY CHARACTER, INCLUDING, WITHOUT LIMITATION, DAMAGES * ARISING OUT OF OR RELATING TO THE SOFTWARE OR THIS AGREEMENT, DAMAGES * FOR LOSS OF GOODWILL, WORK STOPPAGE, OR LOSS OF DATA, OR FOR ANY * DAMAGES, EVEN IF FLL SHALL HAVE BEEN INFORMED OF THE POSSIBILITY OF * SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY. EVEN IF A PART * OF THE SOFTWARE HAS BEEN DEVELOPED BY A THIRD PARTY, THE THIRD PARTY * DEVELOPER SHALL HAVE NO LIABILITY IN CONNECTION WITH THE USE, * PERFORMANCE OR NON-PERFORMANCE OF THE SOFTWARE. * * $OpenXM: OpenXM_contrib2/asir2000/builtin/fctr.c,v 1.11 2002/01/09 07:45:40 noro Exp $ */ #include "ca.h" #include "parse.h" void Pfctr(), Pgcd(), Pgcdz(), Plcm(), Psqfr(), Pufctrhint(); void Pptozp(), Pcont(); void Pafctr(), Pagcd(); void Pmodsqfr(),Pmodfctr(),Pddd(),Pnewddd(),Pddd_tab(); void Psfsqfr(),Psfbfctr(),Psfufctr(),Psfmintdeg(); void Pirred_check(), Pnfctr_mod(); void sfmintdeg(VL vl,P fx,int dy,int c,P *fr); void create_bmono(P c,V x,int i,V y,int j,P *mono); struct ftab fctr_tab[] = { {"fctr",Pfctr,-2}, {"gcd",Pgcd,-3}, {"gcdz",Pgcdz,2}, {"lcm",Plcm,2}, {"sqfr",Psqfr,1}, {"ufctrhint",Pufctrhint,2}, {"ptozp",Pptozp,1}, {"cont",Pcont,-2}, {"afctr",Pafctr,2}, {"agcd",Pagcd,3}, {"modsqfr",Pmodsqfr,2}, {"modfctr",Pmodfctr,2}, {"sfsqfr",Psfsqfr,1}, {"sfufctr",Psfufctr,1}, {"sfbfctr",Psfbfctr,-4}, {"sfmintdeg",Psfmintdeg,5}, #if 0 {"ddd",Pddd,2}, {"newddd",Pnewddd,2}, #endif {"ddd_tab",Pddd_tab,2}, {"irred_check",Pirred_check,2}, {"nfctr_mod",Pnfctr_mod,2}, {0,0,0}, }; void Pfctr(arg,rp) NODE arg; LIST *rp; { DCP dc; asir_assert(ARG0(arg),O_P,"fctr"); if ( argc(arg) == 1 ) fctrp(CO,(P)ARG0(arg),&dc); else { asir_assert(ARG1(arg),O_P,"fctr"); fctr_wrt_v_p(CO,(P)ARG0(arg),VR((P)ARG1(arg)),&dc); } dcptolist(dc,rp); } void Pgcd(arg,rp) NODE arg; P *rp; { P p1,p2,g1,g2,g; Num m; int mod; p1 = (P)ARG0(arg); p2 = (P)ARG1(arg); asir_assert(p1,O_P,"gcd"); asir_assert(p2,O_P,"gcd"); if ( !p1 ) *rp = p2; else if ( !p2 ) *rp = p1; else if ( !qpcheck((Obj)p1) || !qpcheck((Obj)p2) ) gcdprsp(CO,p1,p2,rp); else if ( argc(arg) == 2 ) ezgcdp(CO,p1,p2,rp); else { m = (Num)ARG2(arg); asir_assert(m,O_P,"gcd"); mod = QTOS((Q)m); ptomp(mod,p1,&g1); ptomp(mod,p2,&g2); gcdprsmp(CO,mod,g1,g2,&g); mptop(g,rp); } } void Pgcdz(arg,rp) NODE arg; P *rp; { P p1,p2,t; Q c1,c2; N n; p1 = (P)ARG0(arg); p2 = (P)ARG1(arg); asir_assert(p1,O_P,"gcdz"); asir_assert(p2,O_P,"gcdz"); if ( !p1 ) *rp = p2; else if ( !p2 ) *rp = p1; else if ( !qpcheck((Obj)p1) || !qpcheck((Obj)p2) ) error("gcdz : invalid argument"); else if ( NUM(p1) || NUM(p2) ) { if ( NUM(p1) ) c1 = (Q)p1; else ptozp(p1,1,&c1,&t); if ( NUM(p2) ) c2 = (Q)p2; else ptozp(p2,1,&c2,&t); gcdn(NM(c1),NM(c2),&n); NTOQ(n,1,c1); *rp = (P)c1; } else { #if 0 w[0] = p1; w[1] = p2; nezgcdnpz(CO,w,2,rp); #endif ezgcdpz(CO,p1,p2,rp); } } void Plcm(arg,rp) NODE arg; P *rp; { P t1,t2,p1,p2,g,q; Q c; p1 = (P)ARG0(arg); p2 = (P)ARG1(arg); asir_assert(p1,O_P,"lcm"); asir_assert(p2,O_P,"lcm"); if ( !p1 || !p2 ) *rp = 0; else if ( !qpcheck((Obj)p1) || !qpcheck((Obj)p2) ) error("lcm : invalid argument"); else { ptozp(p1,1,&c,&t1); ptozp(p2,1,&c,&t2); ezgcdp(CO,t1,t2,&g); divsp(CO,t1,g,&q); mulp(CO,q,t2,rp); } } void Psqfr(arg,rp) NODE arg; LIST *rp; { DCP dc; asir_assert(ARG0(arg),O_P,"sqfr"); sqfrp(CO,(P)ARG0(arg),&dc); dcptolist(dc,rp); } void Pufctrhint(arg,rp) NODE arg; LIST *rp; { DCP dc; asir_assert(ARG0(arg),O_P,"ufctrhint"); asir_assert(ARG1(arg),O_N,"ufctrhint"); ufctr((P)ARG0(arg),QTOS((Q)ARG1(arg)),&dc); dcptolist(dc,rp); } #if 0 Pmgcd(arg,rp) NODE arg; Obj *rp; { NODE node,tn; int i,m; P *l; node = BDY((LIST)ARG0(arg)); for ( i = 0, tn = node; tn; tn = NEXT(tn), i++ ); m = i; l = (P *)ALLOCA(m*sizeof(P)); for ( i = 0, tn = node; i < m; tn = NEXT(tn), i++ ) l[i] = (P)BDY(tn); nezgcdnpz(CO,l,m,rp); } #endif void Pcont(arg,rp) NODE arg; P *rp; { DCP dc; int m; P p,p1; P *l; V v; asir_assert(ARG0(arg),O_P,"cont"); p = (P)ARG0(arg); if ( NUM(p) ) *rp = p; else { if ( argc(arg) == 2 ) { v = VR((P)ARG1(arg)); change_mvar(CO,p,v,&p1); if ( VR(p1) != v ) { *rp = p1; return; } else p = p1; } for ( m = 0, dc = DC(p); dc; dc = NEXT(dc), m++ ); l = (P *)ALLOCA(m*sizeof(P)); for ( m = 0, dc = DC(p); dc; dc = NEXT(dc), m++ ) l[m] = COEF(dc); nezgcdnpz(CO,l,m,rp); } } void Pptozp(arg,rp) NODE arg; P *rp; { Q t; asir_assert(ARG0(arg),O_P,"ptozp"); ptozp((P)ARG0(arg),1,&t,rp); } void Pafctr(arg,rp) NODE arg; LIST *rp; { DCP dc; asir_assert(ARG0(arg),O_P,"afctr"); asir_assert(ARG1(arg),O_P,"afctr"); afctr(CO,(P)ARG0(arg),(P)ARG1(arg),&dc); dcptolist(dc,rp); } void Pagcd(arg,rp) NODE arg; P *rp; { asir_assert(ARG0(arg),O_P,"agcd"); asir_assert(ARG1(arg),O_P,"agcd"); asir_assert(ARG2(arg),O_P,"agcd"); gcda(CO,(P)ARG0(arg),(P)ARG1(arg),(P)ARG2(arg),rp); } #if 1 #define Mulum mulum #define Divum divum #define Mulsum mulsum #define Gcdum gcdum #endif void Mulum(), Mulsum(), Gcdum(); int Divum(); #define FCTR 0 /* berlekamp */ #define SQFR 1 #define DDD 2 /* Cantor-Zassenhauss */ #define NEWDDD 3 /* berlekamp + root-finding by Cantor-Zassenhauss */ UM *resberle(); void Pmodfctr(arg,rp) NODE arg; LIST *rp; { DCP dc; int mod; mod = QTOS((Q)ARG1(arg)); if ( mod < 0 ) error("modfctr : invalid modulus"); modfctrp(ARG0(arg),mod,NEWDDD,&dc); if ( !dc ) { NEWDC(dc); COEF(dc) = 0; DEG(dc) = ONE; NEXT(dc) = 0; } dcptolist(dc,rp); } void Psfsqfr(arg,rp) NODE arg; LIST *rp; { DCP dc; sfsqfr(ARG0(arg),&dc); dcptolist(dc,rp); } void Psfufctr(arg,rp) NODE arg; LIST *rp; { DCP dc; fctrsf(ARG0(arg),&dc); dcptolist(dc,rp); } void Psfbfctr(arg,rp) NODE arg; LIST *rp; { V x,y; DCP dc,dct; P t; struct oVL vl1,vl2; VL vl; int degbound; x = VR((P)ARG1(arg)); y = VR((P)ARG2(arg)); vl1.v = x; vl1.next = &vl2; vl2.v = y; vl2.next = 0; vl = &vl1; if ( argc(arg) == 4 ) degbound = QTOS((Q)ARG3(arg)); else degbound = -1; sfbfctr((P)ARG0(arg),x,y,degbound,&dc); for ( dct = dc; dct; dct = NEXT(dct) ) { reorderp(CO,vl,COEF(dct),&t); COEF(dct) = t; } dcptolist(dc,rp); } void Psfmintdeg(arg,rp) NODE arg; P *rp; { V x,y; P r; struct oVL vl1,vl2; VL vl; int dy,c; x = VR((P)ARG1(arg)); y = VR((P)ARG2(arg)); vl1.v = x; vl1.next = &vl2; vl2.v = y; vl2.next = 0; vl = &vl1; dy = QTOS((Q)ARG3(arg)); c = QTOS((Q)ARG4(arg)); sfmintdeg(vl,(P)ARG0(arg),dy,c,&r); reorderp(CO,vl,r,rp); } void Pmodsqfr(arg,rp) NODE arg; LIST *rp; { DCP dc; if ( !ARG0(arg) ) { NEWDC(dc); COEF(dc) = 0; DEG(dc) = ONE; NEXT(dc) = 0; } else modfctrp(ARG0(arg),QTOS((Q)ARG1(arg)),SQFR,&dc); dcptolist(dc,rp); } void Pddd(arg,rp) NODE arg; LIST *rp; { DCP dc; if ( !ARG0(arg) ) { NEWDC(dc); COEF(dc) = 0; DEG(dc) = ONE; NEXT(dc) = 0; } else modfctrp(ARG0(arg),QTOS((Q)ARG1(arg)),DDD,&dc); dcptolist(dc,rp); } void Pnewddd(arg,rp) NODE arg; LIST *rp; { DCP dc=0; if ( !ARG0(arg) ) { NEWDC(dc); COEF(dc) = 0; DEG(dc) = ONE; NEXT(dc) = 0; } else modfctrp(ARG0(arg),QTOS((Q)ARG1(arg)),NEWDDD,&dc); dcptolist(dc,rp); } void Pirred_check(arg,rp) NODE arg; Q *rp; { P p; UM mp; int r,mod; p = (P)ARG0(arg); if ( !p ) { *rp = 0; return; } mp = W_UMALLOC(UDEG(p)); mod = QTOS((Q)ARG1(arg)); ptoum(mod,p,mp); r = irred_check(mp,mod); if ( r ) *rp = ONE; else *rp = 0; } void Pnfctr_mod(arg,rp) NODE arg; Q *rp; { P p; UM mp; int r,mod; p = (P)ARG0(arg); if ( !p ) { *rp = 0; return; } mp = W_UMALLOC(UDEG(p)); mod = QTOS((Q)ARG1(arg)); ptoum(mod,p,mp); r = nfctr_mod(mp,mod); STOQ(r,*rp); } void Pddd_tab(arg,rp) NODE arg; VECT *rp; { P p; UM mp,t,q,r1,w,w1; UM *r,*s; int dr,mod,n,i; VECT result; V v; p = (P)ARG0(arg); mod = QTOS((Q)ARG1(arg)); v = VR(p); n = UDEG(p); mp = W_UMALLOC(n); ptoum(mod,p,mp); r = (UM *)W_ALLOC(n); s = (UM *)W_ALLOC(n); r[0] = UMALLOC(0); DEG(r[0]) = 0; COEF(r[0])[0] = 1; t = W_UMALLOC(mod); bzero(COEF(t),sizeof(int)*(mod+1)); DEG(t) = mod; COEF(t)[mod] = 1; q = W_UMALLOC(mod); dr = divum(mod,t,mp,q); DEG(t) = dr; r[1] = r1 = UMALLOC(dr); cpyum(t,r1); s[0] = W_UMALLOC(dr); cpyum(t,s[0]); w = W_UMALLOC(n); bzero(COEF(w),sizeof(int)*(n+1)); w1 = W_UMALLOC(2*n); bzero(COEF(w1),sizeof(int)*(2*n+1)); for ( i = 1; i < n; i++ ) { DEG(w) = i; COEF(w)[i-1] = 0; COEF(w)[i] = 1; mulum(mod,r1,w,w1); dr = divum(mod,w1,mp,q); DEG(w1) = dr; s[i] = W_UMALLOC(dr); cpyum(w1,s[i]); } for ( i = 2; i < n; i++ ) { mult_mod_tab(r[i-1],mod,s,w,n); r[i] = UMALLOC(DEG(w)); cpyum(w,r[i]); } MKVECT(result,n); for ( i = 0; i < n; i++ ) umtop(v,r[i],(P *)&BDY(result)[i]); *rp = result; } struct lb { int pos,len; int *r; int *hist; }; static NODE insert_lb(NODE g,struct lb *a) { NODE prev,cur,n; prev = 0; cur = g; while ( cur ) { if ( a->pos < ((struct lb *)BDY(cur))->pos ) { MKNODE(n,a,cur); if ( !prev ) return n; else { NEXT(prev) = n; return g; } } else { prev = cur; cur = NEXT(cur); } } MKNODE(n,a,0); NEXT(prev) = n; return g; } static void lnf(int *r,int *h,int n,int len,NODE g) { struct lb *t; int pos,i,j,len1,c; int *r1,*h1; for ( ; g; g = NEXT(g) ) { t = (struct lb *)BDY(g); pos = t->pos; if ( c = r[pos] ) { r1 = t->r; h1 = t->hist; len1 = t->len; for ( i = pos; i < n; i++ ) r[i] = _subsf(r[i],_mulsf(r1[i],c)); for ( i = 0; i < len1; i++ ) h[i] = _subsf(h[i],_mulsf(h1[i],c)); } } for ( i = 0; i < n && !r[i]; i++ ); if ( i < n ) { c = _invsf(r[i]); for ( j = i; j < n; j++ ) r[j] = _mulsf(r[j],c); for ( j = i; j < len; j++ ) h[j] = _mulsf(h[j],c); } } void print_vect(int *r,int len) { int i; for ( i = 0; i < len; i++ ) if ( r[i] ) printf("(%d %d)",i,IFTOF(r[i])); printf("\n"); } void sfmintdeg(VL vl,P fx,int dy,int c,P *fr) { V x,y; int dx,dxdy,i,j,k,l,d,len,len0,u,dyk; UP *rx; DCP dc; P t,f,mono,f1; UP ut,h; int ***nf; int *r,*hist,*prev,*r1; struct lb *lb; GFS s; NODE g; x = vl->v; y = NEXT(vl)->v; dx = getdeg(x,fx); dxdy = dx*dy; /* rx = -(fx-x^dx) */ rx = (UP *)CALLOC(dx,sizeof(UP)); for ( dc = DC(fx); dc; dc = NEXT(dc)) { chsgnp(COEF(dc),&t); ptoup(t,&ut); rx[QTOS(DEG(dc))] = ut; } /* nf[d] = normal form table of monomials with total degree d */ nf = (int ***)CALLOC(dx+dy+1,sizeof(int **)); /* xxx */ nf[0] = (int **)CALLOC(1,sizeof(int *)); /* nf[0][0] = 1 */ r = (int *)CALLOC(dxdy,sizeof(int)); r[0] = _onesf(); nf[0][0] = r; hist = (int *)CALLOC(1,sizeof(int)); r[0] = _onesf(); lb = (struct lb *)CALLOC(1,sizeof(struct lb)); lb->pos = 0; lb->r = r; lb->hist = hist; lb->len = 1; /* g : table of normal form as linear form */ MKNODE(g,lb,0); len = 1; h = UPALLOC(dy); for ( d = 1; ; d++ ) { if ( d > c ){ return; } nf[d] = (int **)CALLOC(d+1,sizeof(int *)); len0 = len; len += d+1; for ( i = d; i >= 0; i-- ) { /* nf(x^(d-i)*y^i) = nf(y*nf(x^(d-i)*y^(i-1))) */ /* nf(x^d) = nf(nf(x^(d-1))*x) */ r = (int *)CALLOC(dxdy,sizeof(int)); if ( i == 0 ) { prev = nf[d-1][0]; bcopy(prev,r+dy,(dxdy-dy)*sizeof(int)); /* create the head coeff */ for ( l = 0, k = dxdy-dy; l < dy; l++, k++ ) { if ( prev[k] ) { u = IFTOF(prev[k]); MKGFS(u,s); } else s = 0; COEF(h)[l] = (Num)s; } for ( l = dy-1; l >= 0 && !COEF(h)[l]; l--); DEG(h) = l; for ( k = 0, dyk = 0; k < dx; k++, dyk += dy ) { tmulup(rx[k],h,dy,&ut); if ( ut ) for ( l = 0; l < dy; l++ ) { s = (GFS)COEF(ut)[l]; if ( s ) { u = CONT(s); r[dyk+l] = _addsf(r[dyk+l],FTOIF(u)); } } } } else { prev = nf[d-1][i-1]; for ( k = 0, dyk = 0; k < dx; k++, dyk += dy ) { for ( l = 1; l < dy; l++ ) r[dyk+l] = prev[dyk+l-1]; } } nf[d][i] = r; hist = (int *)CALLOC(len,sizeof(int)); hist[len0+i] = _onesf(); r1 = (int *)CALLOC(dxdy,sizeof(int)); bcopy(r,r1,dxdy*sizeof(int)); lnf(r1,hist,dxdy,len,g); for ( k = 0; k < dxdy && !r1[k]; k++ ); if ( k == dxdy ) { f = 0; for ( k = j = 0; k <= d; k++ ) for ( i = 0; i <= k; i++, j++ ) if ( hist[j] ) { u = IFTOF(hist[j]); MKGFS(u,s); /* mono = s*x^(k-i)*y^i */ create_bmono((P)s,x,k-i,y,i,&mono); addp(vl,f,mono,&f1); f = f1; } *fr = f; return; } else { lb = (struct lb *)CALLOC(1,sizeof(struct lb)); lb->pos = k; lb->r = r1; lb->hist = hist; lb->len = len; g = insert_lb(g,lb); } } } } void create_bmono(P c,V x,int i,V y,int j,P *mono) { P t,s; if ( !i ) if ( !j ) t = c; else { /* c*y^j */ MKV(y,t); COEF(DC(t)) = c; STOQ(j,DEG(DC(t))); } else if ( !j ) { /* c*x^i */ MKV(x,t); COEF(DC(t)) = c; STOQ(i,DEG(DC(t))); } else { MKV(y,s); COEF(DC(s)) = c; STOQ(j,DEG(DC(s))); MKV(x,t); COEF(DC(t)) = s; STOQ(i,DEG(DC(t))); } *mono = t; }