/* * Copyright (c) 1994-2000 FUJITSU LABORATORIES LIMITED * All rights reserved. * * FUJITSU LABORATORIES LIMITED ("FLL") hereby grants you a limited, * non-exclusive and royalty-free license to use, copy, modify and * redistribute, solely for non-commercial and non-profit purposes, the * computer program, "Risa/Asir" ("SOFTWARE"), subject to the terms and * conditions of this Agreement. For the avoidance of doubt, you acquire * only a limited right to use the SOFTWARE hereunder, and FLL or any * third party developer retains all rights, including but not limited to * copyrights, in and to the SOFTWARE. * * (1) FLL does not grant you a license in any way for commercial * purposes. You may use the SOFTWARE only for non-commercial and * non-profit purposes only, such as academic, research and internal * business use. * (2) The SOFTWARE is protected by the Copyright Law of Japan and * international copyright treaties. If you make copies of the SOFTWARE, * with or without modification, as permitted hereunder, you shall affix * to all such copies of the SOFTWARE the above copyright notice. * (3) An explicit reference to this SOFTWARE and its copyright owner * shall be made on your publication or presentation in any form of the * results obtained by use of the SOFTWARE. * (4) In the event that you modify the SOFTWARE, you shall notify FLL by * e-mail at risa-admin@sec.flab.fujitsu.co.jp of the detailed specification * for such modification or the source code of the modified part of the * SOFTWARE. * * THE SOFTWARE IS PROVIDED AS IS WITHOUT ANY WARRANTY OF ANY KIND. FLL * MAKES ABSOLUTELY NO WARRANTIES, EXPRESSED, IMPLIED OR STATUTORY, AND * EXPRESSLY DISCLAIMS ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS * FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF THIRD PARTIES' * RIGHTS. NO FLL DEALER, AGENT, EMPLOYEES IS AUTHORIZED TO MAKE ANY * MODIFICATIONS, EXTENSIONS, OR ADDITIONS TO THIS WARRANTY. * UNDER NO CIRCUMSTANCES AND UNDER NO LEGAL THEORY, TORT, CONTRACT, * OR OTHERWISE, SHALL FLL BE LIABLE TO YOU OR ANY OTHER PERSON FOR ANY * DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE OR CONSEQUENTIAL * DAMAGES OF ANY CHARACTER, INCLUDING, WITHOUT LIMITATION, DAMAGES * ARISING OUT OF OR RELATING TO THE SOFTWARE OR THIS AGREEMENT, DAMAGES * FOR LOSS OF GOODWILL, WORK STOPPAGE, OR LOSS OF DATA, OR FOR ANY * DAMAGES, EVEN IF FLL SHALL HAVE BEEN INFORMED OF THE POSSIBILITY OF * SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY. EVEN IF A PART * OF THE SOFTWARE HAS BEEN DEVELOPED BY A THIRD PARTY, THE THIRD PARTY * DEVELOPER SHALL HAVE NO LIABILITY IN CONNECTION WITH THE USE, * PERFORMANCE OR NON-PERFORMANCE OF THE SOFTWARE. * * $OpenXM: OpenXM_contrib2/asir2000/lib/bfct,v 1.13 2000/12/27 07:17:39 noro Exp $ */ /* requires 'primdec' */ /* annihilating ideal of F^s */ def ann(F) { V = vars(F); N = length(V); D = newvect(N); for ( I = 0; I < N; I++ ) D[I] = [deg(F,V[I]),V[I]]; qsort(D,compare_first); for ( V = [], I = N-1; I >= 0; I-- ) V = cons(D[I][1],V); for ( I = N-1, DV = []; I >= 0; I-- ) DV = cons(strtov("d"+rtostr(V[I])),DV); W = append([y1,y2,t],V); DW = append([dy1,dy2,dt],DV); B = [1-y1*y2,t-y1*F]; for ( I = 0; I < N; I++ ) { B = cons(DV[I]+y1*diff(F,V[I])*dt,B); } /* homogenized (heuristics) */ dp_nelim(2); G0 = dp_weyl_gr_main(B,append(W,DW),1,0,6); G1 = []; for ( T = G0; T != []; T = cdr(T) ) { E = car(T); VL = vars(E); if ( !member(y1,VL) && !member(y2,VL) ) G1 = cons(E,G1); } G2 = map(psi,G1,t,dt); G3 = map(subst,G2,t,-1-s); return G3; } /* * compute J_f|s=r, where r = the minimal integral root of global b_f(s) * ann0(F) returns [MinRoot,Ideal] */ def ann0(F) { V = vars(F); N = length(V); D = newvect(N); for ( I = 0; I < N; I++ ) D[I] = [deg(F,V[I]),V[I]]; qsort(D,compare_first); for ( V = [], I = 0; I < N; I++ ) V = cons(D[I][1],V); for ( I = N-1, DV = []; I >= 0; I-- ) DV = cons(strtov("d"+rtostr(V[I])),DV); /* XXX : heuristics */ W = append([y1,y2,t],reverse(V)); DW = append([dy1,dy2,dt],reverse(DV)); WDW = append(W,DW); B = [1-y1*y2,t-y1*F]; for ( I = 0; I < N; I++ ) { B = cons(DV[I]+y1*diff(F,V[I])*dt,B); } /* homogenized (heuristics) */ dp_nelim(2); G0 = dp_weyl_gr_main(B,WDW,1,0,6); G1 = []; for ( T = G0; T != []; T = cdr(T) ) { E = car(T); VL = vars(E); if ( !member(y1,VL) && !member(y2,VL) ) G1 = cons(E,G1); } G2 = map(psi,G1,t,dt); G3 = map(subst,G2,t,-1-s); /* G3 = J_f(s) */ V1 = cons(s,V); DV1 = cons(ds,DV); V1DV1 = append(V1,DV1); G4 = dp_weyl_gr_main(cons(F,G3),V1DV1,0,1,0); Bf = weyl_minipoly(G4,V1DV1,0,s); FList = cdr(fctr(Bf)); for ( T = FList, Min = 0; T != []; T = cdr(T) ) { LF = car(car(T)); Root = -coef(LF,0)/coef(LF,1); if ( dn(Root) == 1 && Root < Min ) Min = Root; } return [Min,map(subst,G3,s,Min)]; } def indicial1(F,V) { W = append([y1,t],V); N = length(V); B = [t-y1*F]; for ( I = N-1, DV = []; I >= 0; I-- ) DV = cons(strtov("d"+rtostr(V[I])),DV); DW = append([dy1,dt],DV); for ( I = 0; I < N; I++ ) { B = cons(DV[I]+y1*diff(F,V[I])*dt,B); } dp_nelim(1); /* homogenized (heuristics) */ G0 = dp_weyl_gr_main(B,append(W,DW),1,0,6); G1 = map(subst,G0,y1,1); G2 = map(psi,G1,t,dt); G3 = map(subst,G2,t,-s-1); return G3; } def psi(F,T,DT) { D = dp_ptod(F,[T,DT]); Wmax = weight(D); D1 = dp_rest(D); for ( ; D1; D1 = dp_rest(D1) ) if ( weight(D1) > Wmax ) Wmax = weight(D1); for ( D1 = D, Dmax = 0; D1; D1 = dp_rest(D1) ) if ( weight(D1) == Wmax ) Dmax += dp_hm(D1); if ( Wmax >= 0 ) Dmax = dp_weyl_mul(<>,Dmax); else Dmax = dp_weyl_mul(<<0,-Wmax>>,Dmax); Rmax = dp_dtop(Dmax,[T,DT]); R = b_subst(subst(Rmax,DT,1),T); return R; } def weight(D) { V = dp_etov(D); return V[1]-V[0]; } def compare_first(A,B) { A0 = car(A); B0 = car(B); if ( A0 > B0 ) return 1; else if ( A0 < B0 ) return -1; else return 0; } /* generic b-function w.r.t. weight vector W */ def generic_bfct(F,V,DV,W) { N = length(V); N2 = N*2; /* create a term order M in D */ M = newmat(N2,N2); for ( J = 0; J < N2; J++ ) M[0][J] = 1; for ( I = 1; I < N2; I++ ) M[I][N2-I] = -1; VDV = append(V,DV); /* create a non-term order MW in D */ MW = newmat(N2+1,N2); for ( J = 0; J < N; J++ ) MW[0][J] = -W[J]; for ( ; J < N2; J++ ) MW[0][J] = W[J-N]; for ( I = 1; I <= N2; I++ ) for ( J = 0; J < N2; J++ ) MW[I][J] = M[I-1][J]; /* create a homogenized term order MWH in D */ MWH = newmat(N2+2,N2+1); for ( J = 0; J <= N2; J++ ) MWH[0][J] = 1; for ( I = 1; I <= N2+1; I++ ) for ( J = 0; J < N2; J++ ) MWH[I][J] = MW[I-1][J]; /* homogenize F */ VDVH = append(VDV,[h]); FH = map(dp_dtop,map(dp_homo,map(dp_ptod,F,VDV)),VDVH); /* compute a groebner basis of FH w.r.t. MWH */ GH = dp_weyl_gr_main(FH,VDVH,0,0,MWH); /* dehomigenize GH */ G = map(subst,GH,h,1); /* G is a groebner basis w.r.t. a non term order MW */ /* take the initial part w.r.t. (-W,W) */ GIN = map(initial_part,G,VDV,MW,W); /* GIN is a groebner basis w.r.t. a term order M */ /* As -W+W=0, gr_(-W,W)(D) = D */ /* find b(W1*x1*d1+...+WN*xN*dN) in Id(GIN) */ for ( I = 0, T = 0; I < N; I++ ) T += W[I]*V[I]*DV[I]; B = weyl_minipoly(GIN,VDV,M,T); return B; } def initial_part(F,V,MW,W) { N2 = length(V); N = N2/2; dp_ord(MW); DF = dp_ptod(F,V); R = dp_hm(DF); DF = dp_rest(DF); E = dp_etov(R); for ( I = 0, TW = 0; I < N; I++ ) TW += W[I]*(-E[I]+E[N+I]); RW = TW; for ( ; DF; DF = dp_rest(DF) ) { E = dp_etov(DF); for ( I = 0, TW = 0; I < N; I++ ) TW += W[I]*(-E[I]+E[N+I]); if ( TW == RW ) R += dp_hm(DF); else if ( TW < RW ) break; else error("initial_part : cannot happen"); } return dp_dtop(R,V); } /* b-function of F ? */ def bfct(F) { V = vars(F); N = length(V); D = newvect(N); for ( I = 0; I < N; I++ ) D[I] = [deg(F,V[I]),V[I]]; qsort(D,compare_first); for ( V = [], I = 0; I < N; I++ ) V = cons(D[I][1],V); for ( I = N-1, DV = []; I >= 0; I-- ) DV = cons(strtov("d"+rtostr(V[I])),DV); V1 = cons(s,V); DV1 = cons(ds,DV); G0 = indicial1(F,reverse(V)); G1 = dp_weyl_gr_main(G0,append(V1,DV1),0,1,0); Minipoly = weyl_minipoly(G1,append(V1,DV1),0,s); return Minipoly; } def weyl_minipolym(G,V,O,M,V0) { N = length(V); Len = length(G); dp_ord(O); setmod(M); PS = newvect(Len); PS0 = newvect(Len); for ( I = 0, T = G; T != []; T = cdr(T), I++ ) PS0[I] = dp_ptod(car(T),V); for ( I = 0, T = G; T != []; T = cdr(T), I++ ) PS[I] = dp_mod(dp_ptod(car(T),V),M,[]); for ( I = Len - 1, GI = []; I >= 0; I-- ) GI = cons(I,GI); U = dp_mod(dp_ptod(V0,V),M,[]); T = dp_mod(<<0>>,M,[]); TT = dp_mod(dp_ptod(1,V),M,[]); G = H = [[TT,T]]; for ( I = 1; ; I++ ) { T = dp_mod(<>,M,[]); TT = dp_weyl_nf_mod(GI,dp_weyl_mul_mod(TT,U,M),PS,1,M); H = cons([TT,T],H); L = dp_lnf_mod([TT,T],G,M); if ( !L[0] ) return dp_dtop(L[1],[t]); /* XXX */ else G = insert(G,L); } } def weyl_minipoly(G0,V0,O0,P) { HM = hmlist(G0,V0,O0); N = length(V0); Len = length(G0); dp_ord(O0); PS = newvect(Len); for ( I = 0, T = G0, HL = []; T != []; T = cdr(T), I++ ) PS[I] = dp_ptod(car(T),V0); for ( I = Len - 1, GI = []; I >= 0; I-- ) GI = cons(I,GI); DP = dp_ptod(P,V0); for ( I = 0; ; I++ ) { Prime = lprime(I); if ( !valid_modulus(HM,Prime) ) continue; MP = weyl_minipolym(G0,V0,O0,Prime,P); D = deg(MP,var(MP)); NFP = weyl_nf(GI,DP,1,PS); NF = [[dp_ptod(1,V0),1]]; LCM = 1; for ( J = 1; J <= D; J++ ) { NFPrev = car(NF); NFJ = weyl_nf(GI, dp_weyl_mul(NFP[0],NFPrev[0]),NFP[1]*NFPrev[1],PS); NFJ = remove_cont(NFJ); NF = cons(NFJ,NF); LCM = ilcm(LCM,NFJ[1]); } U = NF[0][0]*idiv(LCM,NF[0][1]); Coef = []; for ( J = D-1; J >= 0; J-- ) { Coef = cons(strtov("u"+rtostr(J)),Coef); U += car(Coef)*NF[D-J][0]*idiv(LCM,NF[D-J][1]); } for ( UU = U, Eq = []; UU; UU = dp_rest(UU) ) Eq = cons(dp_hc(UU),Eq); M = etom([Eq,Coef]); B = henleq(M,Prime); if ( dp_gr_print() ) print(""); if ( B ) { R = 0; for ( I = 0; I < D; I++ ) R += B[0][I]*s^I; R += B[1]*s^D; return R; } } } def weyl_nf(B,G,M,PS) { for ( D = 0; G; ) { for ( U = 0, L = B; L != []; L = cdr(L) ) { if ( dp_redble(G,R=PS[car(L)]) > 0 ) { GCD = igcd(dp_hc(G),dp_hc(R)); CG = idiv(dp_hc(R),GCD); CR = idiv(dp_hc(G),GCD); U = CG*G-dp_weyl_mul(CR*dp_subd(G,R),R); if ( !U ) return [D,M]; D *= CG; M *= CG; break; } } if ( U ) G = U; else { D += dp_hm(G); G = dp_rest(G); } } return [D,M]; } def weyl_nf_mod(B,G,PS,Mod) { for ( D = 0; G; ) { for ( U = 0, L = B; L != []; L = cdr(L) ) { if ( dp_redble(G,R=PS[car(L)]) > 0 ) { CR = dp_hc(G)/dp_hc(R); U = G-dp_weyl_mul_mod(CR*dp_mod(dp_subd(G,R),Mod,[]),R,Mod); if ( !U ) return D; break; } } if ( U ) G = U; else { D += dp_hm(G); G = dp_rest(G); } } return D; } def remove_zero(L) { for ( R = []; L != []; L = cdr(L) ) if ( car(L) ) R = cons(car(L),R); return R; } def z_subst(F,V) { for ( ; V != []; V = cdr(V) ) F = subst(F,car(V),0); return F; } def flatmf(L) { for ( S = []; L != []; L = cdr(L) ) if ( type(F=car(car(L))) != NUM ) S = append(S,[F]); return S; } def member(A,L) { for ( ; L != []; L = cdr(L) ) if ( A == car(L) ) return 1; return 0; } def intersection(A,B) { for ( L = []; A != []; A = cdr(A) ) if ( member(car(A),B) ) L = cons(car(A),L); return L; } def b_subst(F,V) { D = deg(F,V); C = newvect(D+1); for ( I = D; I >= 0; I-- ) C[I] = coef(F,I,V); for ( I = 0, R = 0; I <= D; I++ ) if ( C[I] ) R += C[I]*v_factorial(V,I); return R; } def v_factorial(V,N) { for ( J = N-1, R = 1; J >= 0; J-- ) R *= V-J; return R; } end$