/* * Copyright (c) 1994-2000 FUJITSU LABORATORIES LIMITED * All rights reserved. * * FUJITSU LABORATORIES LIMITED ("FLL") hereby grants you a limited, * non-exclusive and royalty-free license to use, copy, modify and * redistribute, solely for non-commercial and non-profit purposes, the * computer program, "Risa/Asir" ("SOFTWARE"), subject to the terms and * conditions of this Agreement. For the avoidance of doubt, you acquire * only a limited right to use the SOFTWARE hereunder, and FLL or any * third party developer retains all rights, including but not limited to * copyrights, in and to the SOFTWARE. * * (1) FLL does not grant you a license in any way for commercial * purposes. You may use the SOFTWARE only for non-commercial and * non-profit purposes only, such as academic, research and internal * business use. * (2) The SOFTWARE is protected by the Copyright Law of Japan and * international copyright treaties. If you make copies of the SOFTWARE, * with or without modification, as permitted hereunder, you shall affix * to all such copies of the SOFTWARE the above copyright notice. * (3) An explicit reference to this SOFTWARE and its copyright owner * shall be made on your publication or presentation in any form of the * results obtained by use of the SOFTWARE. * (4) In the event that you modify the SOFTWARE, you shall notify FLL by * e-mail at risa-admin@sec.flab.fujitsu.co.jp of the detailed specification * for such modification or the source code of the modified part of the * SOFTWARE. * * THE SOFTWARE IS PROVIDED AS IS WITHOUT ANY WARRANTY OF ANY KIND. FLL * MAKES ABSOLUTELY NO WARRANTIES, EXPRESSED, IMPLIED OR STATUTORY, AND * EXPRESSLY DISCLAIMS ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS * FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF THIRD PARTIES' * RIGHTS. NO FLL DEALER, AGENT, EMPLOYEES IS AUTHORIZED TO MAKE ANY * MODIFICATIONS, EXTENSIONS, OR ADDITIONS TO THIS WARRANTY. * UNDER NO CIRCUMSTANCES AND UNDER NO LEGAL THEORY, TORT, CONTRACT, * OR OTHERWISE, SHALL FLL BE LIABLE TO YOU OR ANY OTHER PERSON FOR ANY * DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE OR CONSEQUENTIAL * DAMAGES OF ANY CHARACTER, INCLUDING, WITHOUT LIMITATION, DAMAGES * ARISING OUT OF OR RELATING TO THE SOFTWARE OR THIS AGREEMENT, DAMAGES * FOR LOSS OF GOODWILL, WORK STOPPAGE, OR LOSS OF DATA, OR FOR ANY * DAMAGES, EVEN IF FLL SHALL HAVE BEEN INFORMED OF THE POSSIBILITY OF * SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY. EVEN IF A PART * OF THE SOFTWARE HAS BEEN DEVELOPED BY A THIRD PARTY, THE THIRD PARTY * DEVELOPER SHALL HAVE NO LIABILITY IN CONNECTION WITH THE USE, * PERFORMANCE OR NON-PERFORMANCE OF THE SOFTWARE. * * $OpenXM: OpenXM_contrib2/asir2000/lib/bfct,v 1.9 2000/12/14 09:36:17 noro Exp $ */ /* requires 'primdec' */ /* annihilating ideal of F^s */ def ann(F) { V = vars(F); N = length(V); D = newvect(N); for ( I = 0; I < N; I++ ) D[I] = [deg(F,V[I]),V[I]]; qsort(D,compare_first); for ( V = [], I = N-1; I >= 0; I-- ) V = cons(D[I][1],V); for ( I = N-1, DV = []; I >= 0; I-- ) DV = cons(strtov("d"+rtostr(V[I])),DV); W = append([y1,y2,t],V); DW = append([dy1,dy2,dt],DV); B = [1-y1*y2,t-y1*F]; for ( I = 0; I < N; I++ ) { B = cons(DV[I]+y1*diff(F,V[I])*dt,B); } dp_nelim(2); G0 = dp_weyl_gr_main(B,append(W,DW),0,0,6); G1 = []; for ( T = G0; T != []; T = cdr(T) ) { E = car(T); VL = vars(E); if ( !member(y1,VL) && !member(y2,VL) ) G1 = cons(E,G1); } G2 = map(subst,G1,dt,1); G3 = map(b_subst,G2,t); G4 = map(subst,G3,t,-1-s); return G4; } def indicial1(F,V) { W = append([y1,t],V); N = length(V); B = [t-y1*F]; for ( I = N-1, DV = []; I >= 0; I-- ) DV = cons(strtov("d"+rtostr(V[I])),DV); DW = append([dy1,dt],DV); for ( I = 0; I < N; I++ ) { B = cons(DV[I]+y1*diff(F,V[I])*dt,B); } dp_nelim(1); /* we use homogenization (heuristically determined) */ G0 = dp_weyl_gr_main(B,append(W,DW),1,0,6); G1 = map(subst,G0,y1,1); Mat = newmat(2,2,[[-1,1],[0,1]]); G2 = map(psi,G1,t,dt); G3 = map(subst,G2,t,-s-1); return G3; } def psi(F,T,DT) { D = dp_ptod(F,[T,DT]); Wmax = weight(D); D1 = dp_rest(D); for ( ; D1; D1 = dp_rest(D1) ) if ( weight(D1) > Wmax ) Wmax = weight(D1); for ( D1 = D, Dmax = 0; D1; D1 = dp_rest(D1) ) if ( weight(D1) == Wmax ) Dmax += dp_hm(D1); if ( Wmax >= 0 ) Dmax = dp_weyl_mul(<>,Dmax); else Dmax = dp_weyl_mul(<<0,-Wmax>>,Dmax); Rmax = dp_dtop(Dmax,[T,DT]); R = b_subst(subst(Rmax,DT,1),T); return R; } def weight(D) { V = dp_etov(D); return V[1]-V[0]; } def compare_first(A,B) { A0 = car(A); B0 = car(B); if ( A0 > B0 ) return 1; else if ( A0 < B0 ) return -1; else return 0; } /* b-function of F ? */ def bfct(F) { V = vars(F); N = length(V); D = newvect(N); for ( I = 0; I < N; I++ ) D[I] = [deg(F,V[I]),V[I]]; qsort(D,compare_first); for ( V = [], I = 0; I < N; I++ ) V = cons(D[I][1],V); for ( I = N-1, DV = []; I >= 0; I-- ) DV = cons(strtov("d"+rtostr(V[I])),DV); V1 = cons(s,V); DV1 = cons(ds,DV); G0 = indicial1(F,reverse(V)); G1 = dp_weyl_gr_main(G0,append(V1,DV1),0,1,0); Minipoly = weyl_minipoly(G1,append(V1,DV1),0,s); return Minipoly; } def weyl_minipolym(G,V,O,M,V0) { N = length(V); Len = length(G); dp_ord(O); setmod(M); PS = newvect(Len); PS0 = newvect(Len); for ( I = 0, T = G; T != []; T = cdr(T), I++ ) PS0[I] = dp_ptod(car(T),V); for ( I = 0, T = G; T != []; T = cdr(T), I++ ) PS[I] = dp_mod(dp_ptod(car(T),V),M,[]); for ( I = Len - 1, GI = []; I >= 0; I-- ) GI = cons(I,GI); U = dp_mod(dp_ptod(V0,V),M,[]); T = dp_mod(<<0>>,M,[]); TT = dp_mod(dp_ptod(1,V),M,[]); G = H = [[TT,T]]; for ( I = 1; ; I++ ) { T = dp_mod(<>,M,[]); TT = dp_weyl_nf_mod(GI,dp_weyl_mul_mod(TT,U,M),PS,1,M); H = cons([TT,T],H); L = dp_lnf_mod([TT,T],G,M); if ( !L[0] ) return dp_dtop(L[1],[V0]); else G = insert(G,L); } } def weyl_minipoly(G0,V0,O0,V) { for ( I = 0; ; I++ ) { Prime = lprime(I); MP = weyl_minipolym(G0,V0,O0,Prime,V); for ( D = deg(MP,V), TL = [], J = 0; J <= D; J++ ) TL = cons(V^J,TL); dp_ord(O0); NF = weyl_gennf(G0,TL,V0,O0)[0]; LHS = weyl_nf_tab(-car(TL),NF,V0); B = weyl_hen_ttob(cdr(TL),NF,LHS,V0,Prime); if ( B ) { R = ptozp(B[1]*car(TL)+B[0]); return R; } } } def weyl_gennf(G,TL,V,O) { N = length(V); Len = length(G); dp_ord(O); PS = newvect(Len); for ( I = 0, T = G, HL = []; T != []; T = cdr(T), I++ ) { PS[I] = dp_ptod(car(T),V); HL = cons(dp_ht(PS[I]),HL); } for ( I = 0, DTL = []; TL != []; TL = cdr(TL) ) DTL = cons(dp_ptod(car(TL),V),DTL); for ( I = Len - 1, GI = []; I >= 0; I-- ) GI = cons(I,GI); T = car(DTL); DTL = cdr(DTL); H = [weyl_nf(GI,T,T,PS)]; T0 = time()[0]; while ( DTL != [] ) { T = car(DTL); DTL = cdr(DTL); if ( dp_gr_print() ) print(".",2); if ( L = search_redble(T,H) ) { DD = dp_subd(T,L[1]); NF = weyl_nf(GI,dp_weyl_mul(L[0],dp_subd(T,L[1])),dp_hc(L[1])*T,PS); } else NF = weyl_nf(GI,T,T,PS); NF = remove_cont(NF); H = cons(NF,H); } if ( dp_gr_print() ) print(""); TNF = time()[0]-T0; if ( dp_gr_print() ) print("gennf(TAB="+rtostr(TTAB)+" NF="+rtostr(TNF)+")"); return [H,PS,GI]; } def weyl_nf(B,G,M,PS) { for ( D = 0; G; ) { for ( U = 0, L = B; L != []; L = cdr(L) ) { if ( dp_redble(G,R=PS[car(L)]) > 0 ) { GCD = igcd(dp_hc(G),dp_hc(R)); CG = idiv(dp_hc(R),GCD); CR = idiv(dp_hc(G),GCD); U = CG*G-dp_weyl_mul(CR*dp_subd(G,R),R); if ( !U ) return [D,M]; D *= CG; M *= CG; break; } } if ( U ) G = U; else { D += dp_hm(G); G = dp_rest(G); } } return [D,M]; } def weyl_nf_mod(B,G,PS,Mod) { for ( D = 0; G; ) { for ( U = 0, L = B; L != []; L = cdr(L) ) { if ( dp_redble(G,R=PS[car(L)]) > 0 ) { CR = dp_hc(G)/dp_hc(R); U = G-dp_weyl_mul_mod(CR*dp_mod(dp_subd(G,R),Mod,[]),R,Mod); if ( !U ) return D; break; } } if ( U ) G = U; else { D += dp_hm(G); G = dp_rest(G); } } return D; } def weyl_hen_ttob(T,NF,LHS,V,MOD) { T0 = time()[0]; M = etom(weyl_leq_nf(T,NF,LHS,V)); TE = time()[0] - T0; T0 = time()[0]; U = henleq(M,MOD); TH = time()[0] - T0; if ( dp_gr_print() ) { print("(etom="+rtostr(TE)+" hen="+rtostr(TH)+")"); } return U ? vtop(T,U,LHS) : 0; } def weyl_leq_nf(TL,NF,LHS,V) { TLen = length(NF); T = newvect(TLen); M = newvect(TLen); for ( I = 0; I < TLen; I++ ) { T[I] = dp_ht(NF[I][1]); M[I] = dp_hc(NF[I][1]); } Len = length(TL); INDEX = newvect(Len); COEF = newvect(Len); for ( L = TL, J = 0; L != []; L = cdr(L), J++ ) { D = dp_ptod(car(L),V); for ( I = 0; I < TLen; I++ ) if ( D == T[I] ) break; INDEX[J] = I; COEF[J] = strtov("u"+rtostr(J)); } if ( !LHS ) { COEF[0] = 1; NM = 0; DN = 1; } else { NM = LHS[0]; DN = LHS[1]; } for ( J = 0, S = -NM; J < Len; J++ ) { DNJ = M[INDEX[J]]; GCD = igcd(DN,DNJ); CS = DNJ/GCD; CJ = DN/GCD; S = CS*S + CJ*NF[INDEX[J]][0]*COEF[J]; DN *= CS; } for ( D = S, E = []; D; D = dp_rest(D) ) E = cons(dp_hc(D),E); BOUND = LHS ? 0 : 1; for ( I = Len - 1, W = []; I >= BOUND; I-- ) W = cons(COEF[I],W); return [E,W]; } def weyl_nf_tab(A,NF,V) { TLen = length(NF); T = newvect(TLen); M = newvect(TLen); for ( I = 0; I < TLen; I++ ) { T[I] = dp_ht(NF[I][1]); M[I] = dp_hc(NF[I][1]); } A = dp_ptod(A,V); for ( Z = A, Len = 0; Z; Z = dp_rest(Z), Len++ ); INDEX = newvect(Len); COEF = newvect(Len); for ( Z = A, J = 0; Z; Z = dp_rest(Z), J++ ) { D = dp_ht(Z); for ( I = 0; I < TLen; I++ ) if ( D == T[I] ) break; INDEX[J] = I; COEF[J] = dp_hc(Z); } for ( J = 0, S = 0, DN = 1; J < Len; J++ ) { DNJ = M[INDEX[J]]; GCD = igcd(DN,DNJ); CS = DNJ/GCD; CJ = DN/GCD; S = CS*S + CJ*NF[INDEX[J]][0]*COEF[J]; DN *= CS; } return [S,DN]; } def remove_zero(L) { for ( R = []; L != []; L = cdr(L) ) if ( car(L) ) R = cons(car(L),R); return R; } def z_subst(F,V) { for ( ; V != []; V = cdr(V) ) F = subst(F,car(V),0); return F; } def flatmf(L) { for ( S = []; L != []; L = cdr(L) ) if ( type(F=car(car(L))) != NUM ) S = append(S,[F]); return S; } def member(A,L) { for ( ; L != []; L = cdr(L) ) if ( A == car(L) ) return 1; return 0; } def intersection(A,B) { for ( L = []; A != []; A = cdr(A) ) if ( member(car(A),B) ) L = cons(car(A),L); return L; } def b_subst(F,V) { D = deg(F,V); C = newvect(D+1); for ( I = D; I >= 0; I-- ) C[I] = coef(F,I,V); for ( I = 0, R = 0; I <= D; I++ ) if ( C[I] ) R += C[I]*v_factorial(V,I); return R; } def v_factorial(V,N) { for ( J = N-1, R = 1; J >= 0; J-- ) R *= V-J; return R; } end$