/* $OpenXM: OpenXM_contrib2/asir2000/lib/dmul,v 1.1 1999/12/27 04:16:32 noro Exp $ */ #define MAX(a,b) ((a)>(b)?(a):(b)) #define MIN(a,b) ((a)>(b)?(b):(a)) /* CAUTION: functions in this file are experimental. */ /* return: F1*F2 if option 'proc' is supplied as a list of server id's, F1*F2 is calculated by distributed computation. */ def d_mul(F1,F2) { Procs = getopt(proc); if ( type(Procs) == -1 ) Procs = []; NP = length(Procs)+1; V =var(F1); D1 = deg(F1,V); D2 = deg(F2,V); Dmin = MIN(D1,D2); Dfft = p_mag(D1+D2+1)+1; Bound = maxblen(F1)+maxblen(F2)+p_mag(Dmin)+1; Marray = newvect(NP); MIarray = newvect(NP); for ( I = 0; I < NP; I++ ) { Marray[I] = 1; MIarray[I] = []; } for ( M = 1, I = 0, J = 0; p_mag(M) <= Bound; J = (J+1)%NP ) { T = get_next_fft_prime(I,Dfft); if ( !T ) error("fft_mul_d : fft_prime exhausted."); Marray[J] *= T[1]; MIarray[J] = cons(T[0],MIarray[J]); M *= T[1]; I = T[0]+1; } /* Now, Marray[J] = FFTprime[Marray[J][0]]*...*FFTprime[Marray[J][...]] M = Marray[0]*...*Marray[NP-1] */ C = newvect(NP); T0 = time(); for ( J = 0; J < NP-1; J++ ) ox_cmo_rpc(Procs[J],"call_umul",F1,F2,MIarray[J],Marray[J],M); T1 = time(); R = call_umul(F1,F2,MIarray[NP-1],Marray[NP-1],M); T2 = time(); for ( J = 0; J < NP-1; J++ ) R += ox_pop_cmo(Procs[J]); T3 = time(); print(["send",T1[3]-T0[3],"self",T2[3]-T1[3],"recv",T3[3]-T2[3]]); return R%M; } /* return: F1^2 if option 'proc' is supplied as a list of server id's, F1^2 is calculated by distributed computation. */ def d_square(F1) { Procs = getopt(proc); if ( type(Procs) == -1 ) Procs = []; NP = length(Procs)+1; V =var(F1); D1 = deg(F1,V); Dfft = p_mag(2*D1+1)+1; Bound = 2*maxblen(F1)+p_mag(D1)+1; Marray = newvect(NP); MIarray = newvect(NP); for ( I = 0; I < NP; I++ ) { Marray[I] = 1; MIarray[I] = []; } for ( M = 1, I = 0, J = 0; p_mag(M) <= Bound; J = (J+1)%NP ) { T = get_next_fft_prime(I,Dfft); if ( !T ) error("fft_mul_d : fft_prime exhausted."); Marray[J] *= T[1]; MIarray[J] = cons(T[0],MIarray[J]); M *= T[1]; I = T[0]+1; } /* Now, Marray[J] = FFTprime[Marray[J][0]]*...*FFTprime[Marray[J][...]] M = Marray[0]*...*Marray[NP-1] */ C = newvect(NP); T0 = time(); for ( J = 0; J < NP-1; J++ ) ox_cmo_rpc(Procs[J],"call_usquare",F1,MIarray[J],Marray[J],M); T1 = time(); R = call_usquare(F1,MIarray[NP-1],Marray[NP-1],M); T2 = time(); for ( J = 0; J < NP-1; J++ ) R += ox_pop_cmo(Procs[J]); T3 = time(); print(["send",T1[3]-T0[3],"self",T2[3]-T1[3],"recv",T3[3]-T2[3]]); return R%M; } /* return: F1^2 mod V^(D+1) if option 'proc' is supplied as a list of server id's, F1*F2 mod V^(D+1) is calculated by distributed computation. */ def d_tmul(F1,F2,D) { Procs = getopt(proc); if ( type(Procs) == -1 ) Procs = []; NP = length(Procs)+1; V =var(F1); D1 = deg(F1,V); D2 = deg(F2,V); Dmin = MIN(D1,D2); Dfft = p_mag(D1+D2+1)+1; Bound = maxblen(F1)+maxblen(F2)+p_mag(Dmin)+1; Marray = newvect(NP); MIarray = newvect(NP); for ( I = 0; I < NP; I++ ) { Marray[I] = 1; MIarray[I] = []; } for ( M = 1, I = 0, J = 0; p_mag(M) <= Bound; J = (J+1)%NP ) { T = get_next_fft_prime(I,Dfft); if ( !T ) error("fft_mul_d : fft_prime exhausted."); Marray[J] *= T[1]; MIarray[J] = cons(T[0],MIarray[J]); M *= T[1]; I = T[0]+1; } /* Now, Marray[J] = FFTprime[Marray[J][0]]*...*FFTprime[Marray[J][...]] M = Marray[0]*...*Marray[NP-1] */ C = newvect(NP); T0 = time(); for ( J = 0; J < NP-1; J++ ) ox_cmo_rpc(Procs[J],"call_utmul",F1,F2,D,MIarray[J],Marray[J],M); T1 = time(); R = call_utmul(F1,F2,D,MIarray[NP-1],Marray[NP-1],M); T2 = time(); for ( J = 0; J < NP-1; J++ ) R += ox_pop_cmo(Procs[J]); T3 = time(); print(["send",T1[3]-T0[3],"self",T2[3]-T1[3],"recv",T3[3]-T2[3]]); return R%M; } def call_umul(F1,F2,Ind,M1,M) { C = umul_specialmod(F1,F2,Ind); Mhat = idiv(M,M1); MhatInv = inv(Mhat,M1); return (MhatInv*Mhat)*C; } def call_usquare(F1,Ind,M1,M) { C = usquare_specialmod(F1,Ind); Mhat = idiv(M,M1); MhatInv = inv(Mhat,M1); return (MhatInv*Mhat)*C; } def call_utmul(F1,F2,D,Ind,M1,M) { C = utmul_specialmod(F1,F2,D,Ind); Mhat = idiv(M,M1); MhatInv = inv(Mhat,M1); return (MhatInv*Mhat)*C; } end$