/* $OpenXM: OpenXM_contrib2/asir2018/engine/Fgfs.c,v 1.2 2018/09/28 08:20:28 noro Exp $ */ #include "ca.h" void cont_pp_mv_sf(VL vl,VL rvl,P p,P *c,P *pp); void gcdsf_main(VL vl,P *pa,int m,P *r); void ugcdsf(P *pa,int m,P *r); void head_monomial(VL vl,V v,P p,P *coef,P *term); void sqfrsfmain(VL vl,P f,DCP *dcp); void pthrootsf(P f,Z m,P *r); void partial_sqfrsf(VL vl,V v,P f,P *r,DCP *dcp); void gcdsf(VL vl,P *pa,int k,P *r); void mfctrsfmain(VL vl, P f, DCP *dcp); void next_evaluation_point(int *mev,int n); void estimatelc_sf(VL vl,VL rvl,P c,DCP dc,int *mev,P *lcp); void mfctrsf_hensel(VL vl,VL rvl,P f,P pp0,P u0,P v0,P lcu,P lcv,int *mev,P *up); void substvp_sf(VL vl,VL rvl,P f,int *mev,P *r); void shift_sf(VL vl, VL rvl, P f, int *mev, int sgn, P *r); void adjust_coef_sf(VL vl,VL rvl,P lcu,P u0,int *mev,P *r); void extended_gcd_modyk(P u0,P v0,V x,V y,int dy,P *cu,P *cv); void poly_to_gfsn_poly(VL vl,P f,V v,P *r); void gfsn_poly_to_poly(VL vl,P f,V v,P *r); void poly_to_gfsn_poly_main(P f,V v,P *r); void gfsn_poly_to_poly_main(P f,V v,P *r); void gfsn_univariate_to_sfbm(P f,int dy,BM *r); void sfbm_to_gfsn_univariate(BM f,V x,V y,P *r); void monomialfctr_sf(VL vl,P p,P *pr,DCP *dcp) { VL nvl,avl; Z d; P f,t,s; DCP dc0,dc; Obj obj; clctv(vl,p,&nvl); for ( dc0 = 0, avl = nvl, f = p; avl; avl = NEXT(avl) ) { getmindeg(avl->v,f,&d); if ( d ) { MKV(avl->v,t); simp_ff((Obj)t,&obj); t = (P)obj; NEXTDC(dc0,dc); DEG(dc) = d; COEF(dc) = t; pwrp(vl,t,d,&s); divsp(vl,f,s,&t); f = t; } } if ( dc0 ) NEXT(dc) = 0; *pr = f; *dcp = dc0; } void lex_lc(P f,P *c) { if ( !f || NUM(f) ) *c = f; else lex_lc(COEF(DC(f)),c); } DCP append_dc(DCP dc,DCP dct) { DCP dcs; if ( !dc ) return dct; else { for ( dcs = dc; NEXT(dcs); dcs = NEXT(dcs) ); NEXT (dcs) = dct; return dc; } } void sqfrsf(VL vl, P f, DCP *dcp) { DCP dc,dct; Obj obj; P t,s,c,cont; VL tvl,onevl; simp_ff((Obj)f,&obj); f = (P)obj; lex_lc(f,&c); divsp(vl,f,c,&t); f = t; monomialfctr_sf(vl,f,&t,&dc); f = t; clctv(vl,f,&tvl); vl = tvl; NEWVL(onevl); NEXT(onevl)=0; if ( !vl ) ; else if ( !NEXT(vl) ) { sfusqfr(f,&dct); dc = append_dc(dc,NEXT(dct)); } else { t = f; for ( tvl = vl; tvl; tvl = NEXT(tvl) ) { onevl->v = tvl->v; cont_pp_mv_sf(vl,onevl,t,&cont,&s); t = s; sqfrsf(vl,cont,&dct); dc = append_dc(dc,NEXT(dct)); } sqfrsfmain(vl,t,&dct); dc = append_dc(dc,dct); } NEWDC(dct); DEG(dct) = ONE; COEF(dct) = (P)c; NEXT(dct) = dc; *dcp = dct; } void sqfrsfmain(VL vl,P f,DCP *dcp) { VL tvl; DCP dc,dct,dcs; P t,s; Z m,m1; V v; clctv(vl,f,&tvl); vl = tvl; dc = 0; t = f; for ( tvl = vl; tvl; tvl = NEXT(tvl) ) { v = tvl->v; partial_sqfrsf(vl,v,t,&s,&dct); t = s; dc = append_dc(dc,dct); } if ( !NUM(t) ) { STOZ(characteristic_sf(),m); pthrootsf(t,m,&s); sqfrsfmain(vl,s,&dct); for ( dcs = dct; dcs; dcs = NEXT(dcs) ) { mulz(DEG(dcs),m,&m1); DEG(dcs) = m1; } dc = append_dc(dc,dct); } *dcp = dc; } void pthrootsf(P f,Z m,P *r) { DCP dc,dc0,dct; Z qn,rn; if ( NUM(f) ) pthrootgfs((GFS)f,(GFS *)r); else { dc = DC(f); dc0 = 0; for ( dc0 = 0; dc; dc = NEXT(dc) ) { NEXTDC(dc0,dct); pthrootsf(COEF(dc),m,&COEF(dct)); if ( DEG(dc) ) { divqrz(DEG(dc),m,&qn,&rn); if ( rn ) error("pthrootsf : cannot happen"); DEG(dct) = qn; } else DEG(dct) = 0; } NEXT(dct) = 0; MKP(VR(f),dc0,*r); } } void partial_sqfrsf(VL vl,V v,P f,P *r,DCP *dcp) { P ps[2]; DCP dc0,dc; int m; P t,flat,flat1,g,df,q; diffp(vl,f,v,&df); if ( !df ) { *dcp = 0; *r = f; return; } ps[0] = f; ps[1] = df; gcdsf(vl,ps,2,&g); divsp(vl,f,g,&flat); m = 0; t = f; dc0 = 0; while ( !NUM(flat) ) { while ( divtp(vl,t,flat,&q) ) { t = q; m++; } ps[0] = t; ps[1] = flat; gcdsf(vl,ps,2,&flat1); divsp(vl,flat,flat1,&g); flat = flat1; NEXTDC(dc0,dc); COEF(dc) = g; STOZ(m,DEG(dc)); } NEXT(dc) = 0; *dcp = dc0; *r = t; } void gcdsf(VL vl,P *pa,int k,P *r) { P *ps,*pl,*pm; P **cp; int *cn; DCP *ml; Obj obj; int i,j,l,m; P mg,mgsf,t; VL avl,nvl,tvl,svl; ps = (P *)ALLOCA(k*sizeof(P)); for ( i = 0, m = 0; i < k; i++ ) { simp_ff((Obj)pa[i],&obj); if ( obj ) ps[m++] = (P)obj; } if ( !m ) { *r = 0; return; } if ( m == 1 ) { *r = ps[0]; return; } pl = (P *)ALLOCA(m*sizeof(P)); ml = (DCP *)ALLOCA(m*sizeof(DCP)); for ( i = 0; i < m; i++ ) monomialfctr(vl,ps[i],&pl[i],&ml[i]); gcdmonomial(vl,ml,m,&mg); simp_ff((Obj)mg,&obj); mgsf = (P)obj; for ( i = 0, nvl = vl, avl = 0; nvl && i < m; i++ ) { clctv(vl,pl[i],&tvl); intersectv(nvl,tvl,&svl); nvl = svl; mergev(vl,avl,tvl,&svl); avl = svl; } if ( !nvl ) { *r = mgsf; return; } if ( !NEXT(avl) ) { ugcdsf(pl,m,&t); mulp(vl,mgsf,t,r); return; } for ( tvl = nvl, i = 0; tvl; tvl = NEXT(tvl), i++ ); for ( tvl = avl, j = 0; tvl; tvl = NEXT(tvl), j++ ); if ( i == j ) { /* all the pl[i]'s have the same variables */ gcdsf_main(avl,pl,m,&t); } else { cp = (P **)ALLOCA(m*sizeof(P *)); cn = (int *)ALLOCA(m*sizeof(int)); for ( i = 0; i < m; i++ ) { cp[i] = (P *)ALLOCA(lengthp(pl[i])*sizeof(P)); cn[i] = pcoef(vl,nvl,pl[i],cp[i]); } for ( i = j = 0; i < m; i++ ) j += cn[i]; pm = (P *)ALLOCA(j*sizeof(P)); for ( i = l = 0; i < m; i++ ) for ( j = 0; j < cn[i]; j++ ) pm[l++] = cp[i][j]; gcdsf(vl,pm,l,&t); } mulp(vl,mgsf,t,r); } /* univariate gcd */ void ugcdsf(P *pa,int m,P *r) { P *ps; int i; UM w1,w2,w3,w; int d; V v; if ( m == 1 ) { *r = pa[0]; return; } for ( i = 0; i < m; i++ ) if ( NUM(pa[i]) ) { itogfs(1,(GFS *)r); return; } ps = (P *)ALLOCA(m*sizeof(P)); sort_by_deg(m,pa,ps); v = VR(ps[m-1]); d = getdeg(v,ps[m-1]); w1 = W_UMALLOC(d); w2 = W_UMALLOC(d); w3 = W_UMALLOC(d); ptosfum(ps[0],w1); for ( i = 1; i < m; i++ ) { ptosfum(ps[i],w2); gcdsfum(w1,w2,w3); w = w1; w1 = w3; w3 = w; if ( !DEG(w1) ) { itogfs(1,(GFS *)r); return; } } sfumtop(v,w1,r); } /* deg(HT(p),v), where p is considered as distributed poly over F[v] */ int gethdeg(VL vl,V v,P p) { DCP dc; Z dmax; P cmax; if ( !p ) return -1; else if ( NUM(p) ) return 0; else if ( VR(p) != v ) /* HT(p) = HT(lc(p))*x^D */ return gethdeg(vl,v,COEF(DC(p))); else { /* VR(p) = v */ dc = DC(p); dmax = DEG(dc); cmax = COEF(dc); for ( dc = NEXT(dc); dc; dc = NEXT(dc) ) if ( compp(vl,COEF(dc),cmax) > 0 ) { dmax = DEG(dc); cmax = COEF(dc); } return ZTOS(dmax); } } /* all the pa[i]'s have the same variables (=vl) */ void gcdsf_main(VL vl,P *pa,int m,P *r) { int nv,i,i0,imin,d,d0,d1,d2,dmin,index; V v,v0,vmin; VL tvl,nvl,rvl,nvl0,rvl0; P *pc, *ps, *ph,*lps; P x,t,cont,hg,g,hm,mod,s; P hge,ge,ce,he,u,cof1e,mode,mod1,adj,cof1,coadj,q; GFS sf; for ( nv = 0, tvl = vl; tvl; tvl = NEXT(tvl), nv++); if ( nv == 1 ) { ugcdsf(pa,m,r); return; } /* find v s.t. min(deg(pa[i],v)+gethdeg(pa[i],v)) is minimal */ tvl = vl; do { v = tvl->v; i = 0; do { d = getdeg(v,pa[i])+gethdeg(vl,v,pa[i]); if ( i == 0 || (d < d0) ) { d0 = d; i0 = i; v0 = v; } } while ( ++i < m ); if ( tvl == vl || (d0 < dmin) ) { dmin = d0; imin = i0; vmin = v0; } } while ( (tvl = NEXT(tvl)) != 0 ); /* reorder variables so that vmin is the last variable */ for ( nvl0 = 0, rvl0 = 0, tvl = vl; tvl; tvl = NEXT(tvl) ) if ( tvl->v != vmin ) { NEXTVL(nvl0,nvl); nvl->v = tvl->v; NEXTVL(rvl0,rvl); rvl->v = tvl->v; } /* rvl = remaining variables */ NEXT(rvl) = 0; rvl = rvl0; /* nvl = ...,vmin */ NEXTVL(nvl0,nvl); nvl->v = vmin; NEXT(nvl) = 0; nvl = nvl0; MKV(vmin,x); /* for content and primitive part */ pc = (P *)ALLOCA(m*sizeof(P)); ps = (P *)ALLOCA(m*sizeof(P)); ph = (P *)ALLOCA(m*sizeof(P)); /* separate the contents */ for ( i = 0; i < m; i++ ) { reorderp(nvl,vl,pa[i],&t); cont_pp_mv_sf(nvl,rvl,t,&pc[i],&ps[i]); head_monomial(nvl,vmin,ps[i],&ph[i],&t); } ugcdsf(pc,m,&cont); ugcdsf(ph,m,&hg); /* for hg*pp (used in check phase) */ lps = (P *)ALLOCA(m*sizeof(P)); for ( i = 0; i < m; i++ ) mulp(nvl,hg,ps[i],&lps[i]); while ( 1 ) { g = 0; cof1 = 0; hm = 0; itogfs(1,(GFS *)&mod); index = 0; for ( index = 0; getdeg(vmin,mod) <= d+1; index++ ) { /* evaluation pt */ indextogfs(index,(GFS *)&s); substp(nvl,hg,vmin,s,&hge); if ( !hge ) continue; for ( i = 0; i < m; i++ ) substp(nvl,ps[i],vmin,s,&ph[i]); /* ge = GCD(ps[0]|x=s,...,ps[m-1]|x=s) */ gcdsf(nvl,ph,m,&ge); head_monomial(nvl,vmin,ge,&ce,&he); if ( NUM(he) ) { *r = cont; return; } divgfs((GFS)hge,(GFS)ce,&sf); t = (P)sf; mulp(nvl,t,ge,&u); ge = u; divsp(nvl,ph[imin],ge,&t); mulp(nvl,hge,t,&cof1e); /* hm=0 : reset; he==hm : lucky */ if ( !hm || !compp(nvl,he,hm) ) { substp(nvl,mod,vmin,s,&mode); divsp(nvl,mod,mode,&mod1); /* adj = mod/(mod|x=s)*(ge-g|x=s) */ substp(nvl,g,vmin,s,&t); subp(nvl,ge,t,&u); mulp(nvl,mod1,u,&adj); /* coadj = mod/(mod|vmin=s)*(cof1e-cof1e|vmin=s) */ substp(nvl,cof1,vmin,s,&t); subp(nvl,cof1e,t,&u); mulp(nvl,mod1,u,&coadj); if ( !adj ) { /* adj == gcd ? */ for ( i = 0; i < m; i++ ) if ( !divtp(nvl,lps[i],g,&t) ) break; if ( i == m ) { cont_pp_mv_sf(nvl,rvl,g,&t,&u); mulp(nvl,cont,u,&t); reorderp(vl,nvl,t,r); return; } } else if ( !coadj ) { /* ps[imin]/coadj == gcd ? */ if ( divtp(nvl,lps[imin],cof1,&q) ) { for ( i = 0; i < m; i++ ) if ( !divtp(nvl,lps[i],q,&t) ) break; if ( i == m ) { cont_pp_mv_sf(nvl,rvl,q,&t,&u); mulp(nvl,cont,u,&t); reorderp(vl,nvl,t,r); return; } } } addp(nvl,g,adj,&t); g = t; addp(nvl,cof1,coadj,&t); cof1 = t; subp(nvl,x,s,&t); mulp(nvl,mod,t,&u); mod = u; hm = he; } else { d1 = homdeg(hm); d2 = homdeg(he); if ( d1 < d2 ) /* we use current hm */ continue; else if ( d1 > d2 ) { /* use he */ g = ge; cof1 = cof1e; hm = he; subp(nvl,x,s,&mod); } else { /* d1==d2, but hm!=he => both are unlucky */ g = 0; cof1 = 0; itogfs(1,(GFS *)&mod); } } } } } void head_monomial(VL vl,V v,P p,P *coef,P *term) { P t,s,u; DCP dc; GFS one; itogfs(1,&one); t = (P)one; while ( 1 ) { if ( NUM(p) || VR(p) == v ) { *coef = p; *term = t; return; } else { NEWDC(dc); COEF(dc) = (P)one; DEG(dc) = DEG(DC(p)); MKP(VR(p),dc,s); mulp(vl,t,s,&u); t = u; p = COEF(DC(p)); } } } void cont_pp_mv_sf(VL vl,VL rvl,P p,P *c,P *pp) { DP dp; MP t; int i,m; P *ps; struct order_spec *spec, *currentspec; extern struct order_spec *dp_current_spec; currentspec = dp_current_spec; create_order_spec(0,0,&spec); initd(spec); ptod(vl,rvl,p,&dp); for ( t = BDY(dp), m = 0; t; t = NEXT(t), m++ ); ps = (P *)ALLOCA(m*sizeof(P)); for ( t = BDY(dp), i = 0; t; t = NEXT(t), i++ ) ps[i] = (P)C(t); gcdsf(vl,ps,m,c); divsp(vl,p,*c,pp); initd(currentspec); } void mfctrsf(VL vl, P f, DCP *dcp) { DCP dc0,dc,dct,dcs,dcr; Obj obj; simp_ff((Obj)f,&obj); f = (P)obj; sqfrsf(vl,f,&dct); dc = dc0 = dct; dct = NEXT(dct); NEXT(dc) = 0; for ( ; dct; dct = NEXT(dct) ) { mfctrsfmain(vl,COEF(dct),&dcs); for ( dcr = dcs; dcr; dcr = NEXT(dcr) ) DEG(dcr) = DEG(dct); for ( ; NEXT(dc); dc = NEXT(dc) ); NEXT(dc) = dcs; } *dcp = dc0; } /* f : sqfr, non const */ void mfctrsfmain(VL vl, P f, DCP *dcp) { VL tvl,nvl,rvl; DCP dc,dc0,dc1,dc2,dct,lcfdc,dcs; int imin,inext,i,j,n,k,np; int *da; V vx,vy; V *va; P *l,*tl; P gcd,g,df,dfmin; P pa[2]; P f0,pp0,spp0,c,c0,x,y,u,v,lcf,lcu,lcv,u0,v0,t,s; P ype,yme,fin; GFS ev,evy; P *fp0; int *mev,*win; clctv(vl,f,&tvl); vl = tvl; if ( !vl ) error("mfctrsfmain : cannot happen"); if ( !NEXT(vl) ) { /* univariate */ ufctrsf(f,&dc); /* remove lc */ *dcp = NEXT(dc); return; } for ( n = 0, tvl = vl; tvl; tvl = NEXT(tvl), n++ ); va = (V *)ALLOCA(n*sizeof(V)); da = (int *)ALLOCA(n*sizeof(int)); /* find v s.t. diff(f,v) is nonzero and deg(f,v) is minimal */ imin = -1; for ( i = 0, tvl = vl; i < n; tvl = NEXT(tvl), i++ ) { va[i] = tvl->v; da[i] = getdeg(va[i],f); diffp(vl,f,va[i],&df); if ( !df ) continue; if ( imin < 0 || da[i] < da[imin] ) { dfmin = df; imin = i; } } /* find v1 neq v s.t. deg(f,v) is minimal */ inext = -1; for ( i = 0; i < n; i++ ) { if ( i == imin ) continue; if ( inext < 0 || da[i] < da[inext] ) inext = i; } pa[0] = f; pa[1] = dfmin; gcdsf(vl,pa,2,&gcd); if ( !NUM(gcd) ) { /* f = gcd * f/gcd */ mfctrsfmain(vl,gcd,&dc1); divsp(vl,f,gcd,&g); mfctrsfmain(vl,g,&dc2); for ( dct = dc1; NEXT(dct); dct = NEXT(dct) ); NEXT(dct) = dc2; *dcp = dc1; return; } /* create vl s.t. vl[0] = va[imin], vl[1] = va[inext] */ nvl = 0; NEXTVL(nvl,tvl); tvl->v = va[imin]; NEXTVL(nvl,tvl); tvl->v = va[inext]; for ( i = 0; i < n; i++ ) { if ( i == imin || i == inext ) continue; NEXTVL(nvl,tvl); tvl->v = va[i]; } NEXT(tvl) = 0; fin = f; reorderp(nvl,vl,f,&g); f = g; vx = nvl->v; vy = NEXT(nvl)->v; MKV(vx,x); MKV(vy,y); /* remaining variables */ rvl = NEXT(NEXT(nvl)); if ( !rvl ) { /* bivariate */ sfbfctr(f,vx,vy,getdeg(vx,f),&dc1); for ( dc0 = 0; dc1; dc1 = NEXT(dc1) ) { NEXTDC(dc0,dc); DEG(dc) = ONE; reorderp(vl,nvl,COEF(dc1),&COEF(dc)); } NEXT(dc) = 0; *dcp = dc0; return; } /* n >= 3; nvl = (vx,vy,X) */ /* find good evaluation pt for X */ mev = (int *)CALLOC(n-2,sizeof(int)); while ( 1 ) { /* lcf(mev)=0 => invalid */ substvp_sf(nvl,rvl,COEF(DC(f)),mev,&t); if ( t ) { substvp_sf(nvl,rvl,f,mev,&f0); pa[0] = f0; diffp(nvl,f0,vx,&pa[1]); if ( pa[1] ) { gcdsf(nvl,pa,2,&gcd); /* XXX maybe we have to accept the case where gcd is a poly of y */ if ( NUM(gcd) ) break; } } /* XXX if generated indices exceed q of GF(q) => error in indextogfs */ next_evaluation_point(mev,n-2); } /* f0 = f(x,y,mev) */ /* separate content; f0 may have the content wrt x */ cont_pp_sfp(nvl,f0,&c0,&pp0); /* factorize pp0; pp0 = pp0(x,y+evy) = prod dc */ sfbfctr_shift(pp0,vx,vy,getdeg(vx,pp0),&evy,&spp0,&dc); pp0 = spp0; if ( !NEXT(dc) ) { /* f is irreducible */ NEWDC(dc); DEG(dc) = ONE; COEF(dc) = fin; NEXT(dc) = 0; *dcp = dc; return; } /* ype = y+evy, yme = y-evy */ addp(nvl,y,(P)evy,&ype); subp(nvl,y,(P)evy,&yme); /* shift c0; c0 <- c0(y+evy) */ substp(nvl,c0,vy,ype,&s); c0 = s; /* shift f; f <- f(y+evy) */ substp(nvl,f,vy,ype,&s); f = s; /* now f(x,0,mev) = c0 * prod dc */ /* factorize lc_x(f) */ lcf = COEF(DC(f)); mfctrsf(nvl,lcf,&dct); /* skip the first element (= a number) */ lcfdc = NEXT(dct); /* np = number of bivariate factors */ for ( np = 0, dct = dc; dct; dct = NEXT(dct), np++ ); fp0 = (P *)ALLOCA((np+1)*sizeof(P)); for ( i = 0, dct = dc; i < np; dct = NEXT(dct), i++ ) fp0[i] = COEF(dct); fp0[np] = 0; l = tl = (P *)ALLOCA((np+1)*sizeof(P)); win = W_ALLOC(np+1); for ( k = 1, win[0] = 1, --np; ; ) { itogfs(1,(GFS *)&u0); /* u0 = product of selected factors */ for ( i = 0; i < k; i++ ) { mulp(nvl,u0,fp0[win[i]],&t); u0 = t; } /* we have to consider the content */ /* f0 = c0*u0*v0 */ mulp(nvl,LC(u0),c0,&c); estimatelc_sf(nvl,rvl,c,lcfdc,mev,&lcu); divsp(nvl,pp0,u0,&v0); mulp(nvl,LC(v0),c0,&c); estimatelc_sf(nvl,rvl,c,lcfdc,mev,&lcv); mfctrsf_hensel(nvl,rvl,f,pp0,u0,v0,lcu,lcv,mev,&u); if ( u ) { /* save the factor */ reorderp(vl,nvl,u,&t); /* y -> y-evy */ substp(vl,t,vy,yme,tl++); /* update f,pp0 */ divsp(nvl,f,u,&t); f = t; divsp(nvl,pp0,u0,&t); pp0 = t; /* update win, fp0 */ for ( i = 0; i < k-1; i++ ) for ( j = win[i]+1; j < win[i+1]; j++ ) fp0[j-i-1] = fp0[j]; for ( j = win[k-1]+1; j <= np; j++ ) fp0[j-k] = fp0[j]; if ( ( np -= k ) < k ) break; if ( np-win[0]+1 < k ) if ( ++k <= np ) { for ( i = 0; i < k; i++ ) win[i] = i + 1; continue; } else break; else for ( i = 1; i < k; i++ ) win[i] = win[0] + i; } else { if ( ncombi(1,np,k,win) == 0 ) { if ( k == np ) break; else for ( i = 0, ++k; i < k; i++ ) win[i] = i + 1; } } } reorderp(vl,nvl,f,&t); /* y -> y-evy */ substp(vl,t,vy,yme,tl++); *tl = 0; for ( dc0 = 0, i = 0; l[i]; i++ ) { NEXTDC(dc0,dc); DEG(dc) = ONE; COEF(dc) = l[i]; } NEXT(dc) = 0; *dcp = dc0; } void next_evaluation_point(int *e,int n) { int i,t,j; for ( i = n-1; i >= 0; i-- ) if ( e[i] ) break; if ( i < 0 ) e[n-1] = 1; else if ( i == 0 ) { t = e[0]; e[0] = 0; e[n-1] = t+1; } else { e[i-1]++; t = e[i]; for ( j = i; j < n-1; j++ ) e[j] = 0; e[n-1] = t-1; } } /* * dc : f1^E1*...*fk^Ek * find e1,...,ek s.t. fi(mev)^ei | c * and return f1^e1*...*fk^ek * vl = (vx,vy,rvl) */ void estimatelc_sf(VL vl,VL rvl,P c,DCP dc,int *mev,P *lcp) { DCP dct; P r,c1,c2,t,s,f; int i,d; Z q; for ( dct = dc, r = (P)ONE; dct; dct = NEXT(dct) ) { if ( NUM(COEF(dct)) ) continue; /* constant part */ substvp_sf(vl,rvl,COEF(dct),mev,&f); d = ZTOS(DEG(dct)); for ( i = 0, c1 = c; i < d; i++ ) if ( !divtp(vl,c1,f,&c2) ) break; else c1 = c2; if ( i ) { STOZ(i,q); pwrp(vl,COEF(dct),q,&s); mulp(vl,r,s,&t); r = t; } } *lcp = r; } void substvp_sf(VL vl,VL rvl,P f,int *mev,P *r) { int i; VL tvl; P g,t; GFS ev; for ( g = f, i = 0, tvl = rvl; tvl; tvl = NEXT(tvl), i++ ) { if ( !mev ) ev = 0; else indextogfs(mev[i],&ev); substp(vl,g,tvl->v,(P)ev,&t); g = t; } *r = g; } /* * f <- f(X+sgn*mev) */ void shift_sf(VL vl, VL rvl, P f, int *mev, int sgn, P *r) { VL tvl; int i; P x,g,t,s; GFS ev; for ( g = f, tvl = rvl, i = 0; tvl; tvl = NEXT(tvl), i++ ) { if ( !mev[i] ) continue; indextogfs(mev[i],&ev); MKV(tvl->v,x); if ( sgn > 0 ) addp(vl,x,(P)ev,&t); else subp(vl,x,(P)ev,&t); substp(vl,g,tvl->v,t,&s); g = s; } *r = g; } /* * pp(f(0)) = u0*v0 */ void mfctrsf_hensel(VL vl,VL rvl,P f,P pp0,P u0,P v0,P lcu,P lcv,int *mev,P *up) { VL tvl,onevl; P t,s,w,u,v,ff,si,wu,wv,fj,cont; UM ydy; V vx,vy; int dy,n,i,dbd,nv,j; int *md; P *uh,*vh; P x,du0,dv0,m,q,r,fin; P *cu,*cv; GFSN inv; /* check the validity of lc's and adjust coeffs */ /* f -> lcu*lcv*x^(m+l)+... */ mulp(vl,lcu,lcv,&t); if ( !divtp(vl,t,LC(f),&m) ) { *up = 0; return; } mulp(vl,m,f,&t); f = t; /* u0 = am x^m+ ... -> lcu*x^m + a(m-1)*(lcu(mev)/am)*x^(m-1)+... */ /* v0 = bm x^l+ ... -> lcv*x^l + b(l-1)*(lcv(mev)/bl)*x^(l-1)+... */ adjust_coef_sf(vl,rvl,lcu,u0,mev,&u); adjust_coef_sf(vl,rvl,lcv,v0,mev,&v); /* f <- f(X+mev), u <- u(X+mev), v <- v(X+mev) */ fin = f; shift_sf(vl,rvl,f,mev,1,&s); f = s; shift_sf(vl,rvl,u,mev,1,&s); u = s; shift_sf(vl,rvl,v,mev,1,&s); v = s; vx = vl->v; vy = NEXT(vl)->v; n = getdeg(vx,f); dy = getdeg(vy,f)+1; MKV(vx,x); cu = (P *)ALLOCA((n+1)*sizeof(P)); cv = (P *)ALLOCA((n+1)*sizeof(P)); /* ydy = y^dy */ ydy = C_UMALLOC(dy); DEG(ydy) = dy; COEF(ydy)[dy] = _onesf(); setmod_gfsn(ydy); /* (R[y]/(y^dy))[x,X] */ poly_to_gfsn_poly(vl,f,vy,&ff); poly_to_gfsn_poly(vl,u,vy,&t); u = t; poly_to_gfsn_poly(vl,v,vy,&t); v = t; substvp_sf(vl,rvl,u,0,&u0); substvp_sf(vl,rvl,v,0,&v0); /* compute a(x,y), b(x,y) s.t. a*u0+b*v0 = 1 mod y^dy */ extended_gcd_modyk(u0,v0,vx,vy,dy,&cu[0],&cv[0]); /* dv0 = LC(v0)^(-1)*v0 mod y^dy */ invgfsn((GFSN)LC(v0),&inv); mulp(vl,v0,(P)inv,&dv0); /* cu[i]*u0+cv[i]*v0 = x^i mod y^dy */ /* (x*cu[i])*u0+(x*cv[i])*v0 = x^(i+1) */ /* x*cu[i] = q*dv0+r => cu[i+1] = r */ /* cv[i+1]*v0 = x*cv[i]*v0+q*u0*dv0 = (x*cv[i]+q*u0*inv)*v0 */ for ( i = 1; i <= n; i++ ) { mulp(vl,x,cu[i-1],&m); divsrp(vl,m,dv0,&q,&cu[i]); mulp(vl,x,cv[i-1],&m); mulp(vl,q,(P)inv,&t); mulp(vl,t,u0,&s); addp(vl,m,s,&cv[i]); } #if 0 /* XXX : check */ for ( i = 0; i <= n; i++ ) { mulp(vl,cu[i],u0,&m); mulp(vl,cv[i],v0,&s); addp(vl,m,s,&w); printexpr(vl,w); fprintf(asir_out,"\n"); } #endif dbd = dbound(vx,f)+1; /* extract homogeneous parts */ W_CALLOC(dbd,P,uh); W_CALLOC(dbd,P,vh); for ( i = 0; i <= dbd; i++ ) { exthpc(vl,vx,u,i,&uh[i]); exthpc(vl,vx,v,i,&vh[i]); } /* register degrees in each variables */ for ( nv = 0, tvl = rvl; tvl; tvl = NEXT(tvl), nv++ ); md = (int *)ALLOCA(nv*sizeof(int)); for ( i = 0, tvl = rvl; i < nv; tvl = NEXT(tvl), i++ ) md[i] = getdeg(tvl->v,f); /* XXX for removing content of factor wrt vx */ NEWVL(onevl); onevl->v = vx; NEXT(onevl) = 0; for ( j = 1; j <= dbd; j++ ) { for ( i = 0, tvl = rvl; i < nv; tvl = NEXT(tvl), i++ ) if ( getdeg(tvl->v,u)+getdeg(tvl->v,v) > md[i] ) { *up = 0; return; } for ( i = 0, t = 0; i <= j; i++ ) { mulp(vl,uh[i],vh[j-i],&s); addp(vl,s,t,&w); t = w; } /* s = degree j part of (f-uv) */ exthpc(vl,vx,ff,j,&fj); subp(vl,fj,t,&s); for ( i = 0, wu = 0, wv = 0; i <= n; i++ ) { if ( !s ) si = 0; else if ( VR(s) == vx ) coefp(s,i,&si); else if ( i == 0 ) si = s; else si = 0; if ( si ) { mulp(vl,si,cv[i],&m); addp(vl,wu,m,&t); wu = t; mulp(vl,si,cu[i],&m); addp(vl,wv,m,&t); wv = t; } } if ( !wu ) { gfsn_poly_to_poly(vl,u,vy,&t); shift_sf(vl,rvl,t,mev,-1,&s); if ( divtp(vl,fin,s,&q) ) { cont_pp_mv_sf(vl,onevl,s,&cont,up); return; } } if ( !wv ) { gfsn_poly_to_poly(vl,v,vy,&t); shift_sf(vl,rvl,t,mev,-1,&s); if ( divtp(vl,fin,s,&q) ) { cont_pp_mv_sf(vl,onevl,q,&cont,up); return; } } addp(vl,u,wu,&t); u = t; addp(vl,uh[j],wu,&t); uh[j] = t; addp(vl,v,wv,&t); v = t; addp(vl,vh[j],wv,&t); vh[j] = t; } gfsn_poly_to_poly(vl,u,vy,&t); shift_sf(vl,rvl,t,mev,-1,&s); if ( divtp(vl,fin,s,&q) ) cont_pp_mv_sf(vl,onevl,s,&cont,up); else *up = 0; } void adjust_coef_sf(VL vl,VL rvl,P lcu,P u0,int *mev,P *r) { P lcu0,cu; DCP dc0,dcu,dc; substvp_sf(vl,rvl,lcu,mev,&lcu0); divsp(vl,lcu0,LC(u0),&cu); for ( dc0 = 0, dcu = DC(u0); dcu; dcu = NEXT(dcu) ) { if ( !dc0 ) { NEXTDC(dc0,dc); COEF(dc) = lcu; } else { NEXTDC(dc0,dc); mulp(vl,cu,COEF(dcu),&COEF(dc)); } DEG(dc) = DEG(dcu); } NEXT(dc) = 0; MKP(VR(u0),dc0,*r); } void extended_gcd_modyk(P u0,P v0,V x,V y,int dy,P *cu,P *cv) { BM g,h,a,b; gfsn_univariate_to_sfbm(u0,dy,&g); gfsn_univariate_to_sfbm(v0,dy,&h); sfexgcd_by_hensel(g,h,dy,&a,&b); sfbm_to_gfsn_univariate(a,x,y,cu); sfbm_to_gfsn_univariate(b,x,y,cv); } /* (F[y])[x] -> F[x][y] */ void gfsn_univariate_to_sfbm(P f,int dy,BM *r) { int dx,d,i; BM b; UM cy; DCP dc; dx = getdeg(VR(f),f); b = BMALLOC(dx,dy); DEG(b) = dy; for ( dc = DC(f); dc; dc = NEXT(dc) ) { /* d : degree in x, cy : poly in y */ d = ZTOS(DEG(dc)); cy = BDY((GFSN)COEF(dc)); for ( i = DEG(cy); i >= 0; i-- ) COEF(COEF(b)[i])[d] = COEF(cy)[i]; } for ( i = 0; i <= dy; i++ ) degum(COEF(b)[i],dx); *r = b; } void sfbm_to_gfsn_univariate(BM f,V x,V y,P *r) { P g; VL vl; sfbmtop(f,x,y,&g); NEWVL(vl); vl->v = x; NEWVL(NEXT(vl)); NEXT(vl)->v = y; NEXT(NEXT(vl)) = 0; poly_to_gfsn_poly(vl,g,y,r); } void poly_to_gfsn_poly(VL vl,P f,V v,P *r) { VL tvl,nvl0,nvl; P g; /* (x,y,...,v,...) -> (x,y,...,v) */ for ( nvl0 = 0, tvl = vl; tvl; tvl = NEXT(tvl) ) { if ( tvl->v != v ) { NEXTVL(nvl0,nvl); nvl->v = tvl->v; } } NEXTVL(nvl0,nvl); nvl->v = v; NEXT(nvl) = 0; reorderp(nvl0,vl,f,&g); poly_to_gfsn_poly_main(g,v,r); } void poly_to_gfsn_poly_main(P f,V v,P *r) { int d; UM u; GFSN g; DCP dc,dct,dc0; if ( !f ) *r = f; else if ( NUM(f) || VR(f) == v ) { d = getdeg(v,f); u = UMALLOC(d); ptosfum(f,u); MKGFSN(u,g); *r = (P)g; } else { for ( dc0 = 0, dct = DC(f); dct; dct = NEXT(dct) ) { NEXTDC(dc0,dc); DEG(dc) = DEG(dct); poly_to_gfsn_poly_main(COEF(dct),v,&COEF(dc)); } NEXT(dc) = 0; MKP(VR(f),dc0,*r); } } void gfsn_poly_to_poly(VL vl,P f,V v,P *r) { VL tvl,nvl0,nvl; P g; gfsn_poly_to_poly_main(f,v,&g); /* (x,y,...,v,...) -> (x,y,...,v) */ for ( nvl0 = 0, tvl = vl; tvl; tvl = NEXT(tvl) ) { if ( tvl->v != v ) { NEXTVL(nvl0,nvl); nvl->v = tvl->v; } } NEXTVL(nvl0,nvl); nvl->v = v; NEXT(nvl) = 0; reorderp(vl,nvl0,g,r); } void gfsn_poly_to_poly_main(P f,V v,P *r) { DCP dc,dc0,dct; if ( !f ) *r = f; else if ( NUM(f) ) { if ( NID((Num)f) == N_GFSN ) sfumtop(v,BDY((GFSN)f),r); else *r = f; } else { for ( dc0 = 0, dct = DC(f); dct; dct = NEXT(dct) ) { NEXTDC(dc0,dc); DEG(dc) = DEG(dct); gfsn_poly_to_poly_main(COEF(dct),v,&COEF(dc)); } NEXT(dc) = 0; MKP(VR(f),dc0,*r); } } void printsfum(UM f) { int i; for ( i = DEG(f); i >= 0; i-- ) { printf("+("); printf("%d",IFTOF(COEF(f)[i])); printf(")*y^%d",i); } } void printsfbm(BM f) { int i; for ( i = DEG(f); i >= 0; i-- ) { printf("+("); printsfum(COEF(f)[i]); printf(")*y^%d",i); } }