/* * Copyright (c) 1994-2000 FUJITSU LABORATORIES LIMITED * All rights reserved. * * FUJITSU LABORATORIES LIMITED ("FLL") hereby grants you a limited, * non-exclusive and royalty-free license to use, copy, modify and * redistribute, solely for non-commercial and non-profit purposes, the * computer program, "Risa/Asir" ("SOFTWARE"), subject to the terms and * conditions of this Agreement. For the avoidance of doubt, you acquire * only a limited right to use the SOFTWARE hereunder, and FLL or any * third party developer retains all rights, including but not limited to * copyrights, in and to the SOFTWARE. * * (1) FLL does not grant you a license in any way for commercial * purposes. You may use the SOFTWARE only for non-commercial and * non-profit purposes only, such as academic, research and internal * business use. * (2) The SOFTWARE is protected by the Copyright Law of Japan and * international copyright treaties. If you make copies of the SOFTWARE, * with or without modification, as permitted hereunder, you shall affix * to all such copies of the SOFTWARE the above copyright notice. * (3) An explicit reference to this SOFTWARE and its copyright owner * shall be made on your publication or presentation in any form of the * results obtained by use of the SOFTWARE. * (4) In the event that you modify the SOFTWARE, you shall notify FLL by * e-mail at risa-admin@sec.flab.fujitsu.co.jp of the detailed specification * for such modification or the source code of the modified part of the * SOFTWARE. * * THE SOFTWARE IS PROVIDED AS IS WITHOUT ANY WARRANTY OF ANY KIND. FLL * MAKES ABSOLUTELY NO WARRANTIES, EXPRESSED, IMPLIED OR STATUTORY, AND * EXPRESSLY DISCLAIMS ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS * FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF THIRD PARTIES' * RIGHTS. NO FLL DEALER, AGENT, EMPLOYEES IS AUTHORIZED TO MAKE ANY * MODIFICATIONS, EXTENSIONS, OR ADDITIONS TO THIS WARRANTY. * UNDER NO CIRCUMSTANCES AND UNDER NO LEGAL THEORY, TORT, CONTRACT, * OR OTHERWISE, SHALL FLL BE LIABLE TO YOU OR ANY OTHER PERSON FOR ANY * DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE OR CONSEQUENTIAL * DAMAGES OF ANY CHARACTER, INCLUDING, WITHOUT LIMITATION, DAMAGES * ARISING OUT OF OR RELATING TO THE SOFTWARE OR THIS AGREEMENT, DAMAGES * FOR LOSS OF GOODWILL, WORK STOPPAGE, OR LOSS OF DATA, OR FOR ANY * DAMAGES, EVEN IF FLL SHALL HAVE BEEN INFORMED OF THE POSSIBILITY OF * SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY. EVEN IF A PART * OF THE SOFTWARE HAS BEEN DEVELOPED BY A THIRD PARTY, THE THIRD PARTY * DEVELOPER SHALL HAVE NO LIABILITY IN CONNECTION WITH THE USE, * PERFORMANCE OR NON-PERFORMANCE OF THE SOFTWARE. * * $OpenXM: OpenXM_contrib2/asir2018/lib/bfct,v 1.1 2018/09/19 05:45:08 noro Exp $ */ /* requires 'primdec' */ #define TMP_S ssssssss #define TMP_DS dssssssss #define TMP_T dtttttttt #define TMP_DT tttttttt #define TMP_Y1 yyyyyyyy1 #define TMP_DY1 dyyyyyyyy1 #define TMP_Y2 yyyyyyyy2 #define TMP_DY2 dyyyyyyyy2 if (!module_definedp("gr")) load("gr")$ else{ }$ if (!module_definedp("primdec")) load("primdec")$ else{ }$ module bfct $ /* Empty for now. It will be used in a future. */ endmodule $ /* toplevel */ def bfunction(F) { V = vars(F); N = length(V); D = newvect(N); for ( I = 0; I < N; I++ ) D[I] = [deg(F,V[I]),V[I]]; qsort(D,compare_first); for ( V = [], I = 0; I < N; I++ ) V = cons(D[I][1],V); return bfct_via_gbfct_weight(F,V); } /* annihilating ideal of F^s */ def ann(F) { if ( member(s,vars(F)) ) error("ann : the variable 's' is reserved."); V = vars(F); N = length(V); D = newvect(N); for ( I = 0; I < N; I++ ) D[I] = [deg(F,V[I]),V[I]]; qsort(D,compare_first); for ( V = [], I = N-1; I >= 0; I-- ) V = cons(D[I][1],V); for ( I = N-1, DV = []; I >= 0; I-- ) DV = cons(strtov("d"+rtostr(V[I])),DV); W = append([TMP_Y1,TMP_Y2,TMP_T],V); DW = append([TMP_DY1,TMP_DY2,TMP_DT],DV); B = [1-TMP_Y1*TMP_Y2,TMP_T-TMP_Y1*F]; for ( I = 0; I < N; I++ ) { B = cons(DV[I]+TMP_Y1*diff(F,V[I])*TMP_DT,B); } /* homogenized (heuristics) */ dp_nelim(2); G0 = dp_weyl_gr_main(B,append(W,DW),1,0,6); G1 = []; for ( T = G0; T != []; T = cdr(T) ) { E = car(T); VL = vars(E); if ( !member(TMP_Y1,VL) && !member(TMP_Y2,VL) ) G1 = cons(E,G1); } G2 = map(psi,G1,TMP_T,TMP_DT); G3 = map(subst,G2,TMP_T,-1-s); return G3; } /* * compute J_f|s=r, where r = the minimal integral root of global b_f(s) * ann0(F) returns [MinRoot,Ideal] */ def ann0(F) { F = subst(F,s,TMP_S); Ann = ann(F); Bf = bfunction(F); FList = cdr(fctr(Bf)); for ( T = FList, Min = 0; T != []; T = cdr(T) ) { LF = car(car(T)); Root = -coef(LF,0)/coef(LF,1); if ( dn(Root) == 1 && Root < Min ) Min = Root; } return [Min,map(subst,Ann,s,Min,TMP_S,s,TMP_DS,ds)]; } def psi(F,T,DT) { D = dp_ptod(F,[T,DT]); Wmax = weight(D); D1 = dp_rest(D); for ( ; D1; D1 = dp_rest(D1) ) if ( weight(D1) > Wmax ) Wmax = weight(D1); for ( D1 = D, Dmax = 0; D1; D1 = dp_rest(D1) ) if ( weight(D1) == Wmax ) Dmax += dp_hm(D1); if ( Wmax >= 0 ) Dmax = dp_weyl_mul(<>,Dmax); else Dmax = dp_weyl_mul(<<0,-Wmax>>,Dmax); Rmax = dp_dtop(Dmax,[T,DT]); R = b_subst(subst(Rmax,DT,1),T); return R; } def weight(D) { V = dp_etov(D); return V[1]-V[0]; } def compare_first(A,B) { A0 = car(A); B0 = car(B); if ( A0 > B0 ) return 1; else if ( A0 < B0 ) return -1; else return 0; } /* generic b-function w.r.t. weight vector W */ def generic_bfct(F,V,DV,W) { N = length(V); N2 = N*2; /* If W is a list, convert it to a vector */ if ( type(W) == 4 ) W = newvect(length(W),W); dp_weyl_set_weight(W); /* create a term order M in D (DRL) */ M = newmat(N2,N2); for ( J = 0; J < N2; J++ ) M[0][J] = 1; for ( I = 1; I < N2; I++ ) M[I][N2-I] = -1; VDV = append(V,DV); /* create a non-term order MW in D */ MW = newmat(N2+1,N2); for ( J = 0; J < N; J++ ) MW[0][J] = -W[J]; for ( ; J < N2; J++ ) MW[0][J] = W[J-N]; for ( I = 1; I <= N2; I++ ) for ( J = 0; J < N2; J++ ) MW[I][J] = M[I-1][J]; /* create a homogenized term order MWH in D */ MWH = newmat(N2+2,N2+1); for ( J = 0; J <= N2; J++ ) MWH[0][J] = 1; for ( I = 1; I <= N2+1; I++ ) for ( J = 0; J < N2; J++ ) MWH[I][J] = MW[I-1][J]; /* homogenize F */ VDVH = append(VDV,[h]); FH = map(dp_dtop,map(dp_homo,map(dp_ptod,F,VDV)),VDVH); /* compute a groebner basis of FH w.r.t. MWH */ dp_gr_flags(["Top",1,"NoRA",1]); GH = dp_weyl_gr_main(FH,VDVH,0,1,11); dp_gr_flags(["Top",0,"NoRA",0]); /* dehomigenize GH */ G = map(subst,GH,h,1); /* G is a groebner basis w.r.t. a non term order MW */ /* take the initial part w.r.t. (-W,W) */ GIN = map(initial_part,G,VDV,MW,W); /* GIN is a groebner basis w.r.t. a term order M */ /* As -W+W=0, gr_(-W,W)(D) = D */ /* find b(W1*x1*d1+...+WN*xN*dN) in Id(GIN) */ for ( I = 0, T = 0; I < N; I++ ) T += W[I]*V[I]*DV[I]; B = weyl_minipoly(GIN,VDV,0,T); /* M represents DRL order */ return B; } /* all term reduction + interreduce */ def generic_bfct_1(F,V,DV,W) { N = length(V); N2 = N*2; /* If W is a list, convert it to a vector */ if ( type(W) == 4 ) W = newvect(length(W),W); dp_weyl_set_weight(W); /* create a term order M in D (DRL) */ M = newmat(N2,N2); for ( J = 0; J < N2; J++ ) M[0][J] = 1; for ( I = 1; I < N2; I++ ) M[I][N2-I] = -1; VDV = append(V,DV); /* create a non-term order MW in D */ MW = newmat(N2+1,N2); for ( J = 0; J < N; J++ ) MW[0][J] = -W[J]; for ( ; J < N2; J++ ) MW[0][J] = W[J-N]; for ( I = 1; I <= N2; I++ ) for ( J = 0; J < N2; J++ ) MW[I][J] = M[I-1][J]; /* create a homogenized term order MWH in D */ MWH = newmat(N2+2,N2+1); for ( J = 0; J <= N2; J++ ) MWH[0][J] = 1; for ( I = 1; I <= N2+1; I++ ) for ( J = 0; J < N2; J++ ) MWH[I][J] = MW[I-1][J]; /* homogenize F */ VDVH = append(VDV,[h]); FH = map(dp_dtop,map(dp_homo,map(dp_ptod,F,VDV)),VDVH); /* compute a groebner basis of FH w.r.t. MWH */ /* dp_gr_flags(["Top",1,"NoRA",1]); */ GH = dp_weyl_gr_main(FH,VDVH,0,1,11); /* dp_gr_flags(["Top",0,"NoRA",0]); */ /* dehomigenize GH */ G = map(subst,GH,h,1); /* G is a groebner basis w.r.t. a non term order MW */ /* take the initial part w.r.t. (-W,W) */ GIN = map(initial_part,G,VDV,MW,W); /* GIN is a groebner basis w.r.t. a term order M */ /* As -W+W=0, gr_(-W,W)(D) = D */ /* find b(W1*x1*d1+...+WN*xN*dN) in Id(GIN) */ for ( I = 0, T = 0; I < N; I++ ) T += W[I]*V[I]*DV[I]; B = weyl_minipoly(GIN,VDV,0,T); /* M represents DRL order */ return B; } def initial_part(F,V,MW,W) { N2 = length(V); N = N2/2; dp_ord(MW); DF = dp_ptod(F,V); R = dp_hm(DF); DF = dp_rest(DF); E = dp_etov(R); for ( I = 0, TW = 0; I < N; I++ ) TW += W[I]*(-E[I]+E[N+I]); RW = TW; for ( ; DF; DF = dp_rest(DF) ) { E = dp_etov(DF); for ( I = 0, TW = 0; I < N; I++ ) TW += W[I]*(-E[I]+E[N+I]); if ( TW == RW ) R += dp_hm(DF); else if ( TW < RW ) break; else error("initial_part : cannot happen"); } return dp_dtop(R,V); } /* b-function of F ? */ def bfct(F) { /* XXX */ F = replace_vars_f(F); V = vars(F); N = length(V); D = newvect(N); for ( I = 0; I < N; I++ ) D[I] = [deg(F,V[I]),V[I]]; qsort(D,compare_first); for ( V = [], I = 0; I < N; I++ ) V = cons(D[I][1],V); for ( I = N-1, DV = []; I >= 0; I-- ) DV = cons(strtov("d"+rtostr(V[I])),DV); V1 = cons(s,V); DV1 = cons(ds,DV); G0 = indicial1(F,reverse(V)); G1 = dp_weyl_gr_main(G0,append(V1,DV1),0,1,0); Minipoly = weyl_minipoly(G1,append(V1,DV1),0,s); return Minipoly; } /* called from bfct() only */ def indicial1(F,V) { W = append([y1,t],V); N = length(V); B = [t-y1*F]; for ( I = N-1, DV = []; I >= 0; I-- ) DV = cons(strtov("d"+rtostr(V[I])),DV); DW = append([dy1,dt],DV); for ( I = 0; I < N; I++ ) { B = cons(DV[I]+y1*diff(F,V[I])*dt,B); } dp_nelim(1); /* homogenized (heuristics) */ G0 = dp_weyl_gr_main(B,append(W,DW),1,0,6); G1 = map(subst,G0,y1,1); G2 = map(psi,G1,t,dt); G3 = map(subst,G2,t,-s-1); return G3; } /* b-function computation via generic_bfct() (experimental) */ def bfct_via_gbfct(F) { V = vars(F); N = length(V); D = newvect(N); for ( I = 0; I < N; I++ ) D[I] = [deg(F,V[I]),V[I]]; qsort(D,compare_first); for ( V = [], I = 0; I < N; I++ ) V = cons(D[I][1],V); V = reverse(V); for ( I = N-1, DV = []; I >= 0; I-- ) DV = cons(strtov("d"+rtostr(V[I])),DV); B = [TMP_T-F]; for ( I = 0; I < N; I++ ) { B = cons(DV[I]+diff(F,V[I])*TMP_DT,B); } V1 = cons(TMP_T,V); DV1 = cons(TMP_DT,DV); W = newvect(N+1); W[0] = 1; R = generic_bfct(B,V1,DV1,W); return subst(R,s,-s-1); } /* use an order s.t. [t,x,y,z,...,dt,dx,dy,dz,...,h] */ def bfct_via_gbfct_weight(F,V) { N = length(V); D = newvect(N); Wt = getopt(weight); if ( type(Wt) != 4 ) { for ( I = 0, Wt = []; I < N; I++ ) Wt = cons(1,Wt); } Tdeg = w_tdeg(F,V,Wt); WtV = newvect(2*(N+1)+1); WtV[0] = Tdeg; WtV[N+1] = 1; /* wdeg(V[I])=Wt[I], wdeg(DV[I])=Tdeg-Wt[I]+1 */ for ( I = 1; I <= N; I++ ) { WtV[I] = Wt[I-1]; WtV[N+1+I] = Tdeg-Wt[I-1]+1; } WtV[2*(N+1)] = 1; dp_set_weight(WtV); for ( I = N-1, DV = []; I >= 0; I-- ) DV = cons(strtov("d"+rtostr(V[I])),DV); B = [TMP_T-F]; for ( I = 0; I < N; I++ ) { B = cons(DV[I]+diff(F,V[I])*TMP_DT,B); } V1 = cons(TMP_T,V); DV1 = cons(TMP_DT,DV); W = newvect(N+1); W[0] = 1; R = generic_bfct_1(B,V1,DV1,W); dp_set_weight(0); return subst(R,s,-s-1); } /* use an order s.t. [x,y,z,...,t,dx,dy,dz,...,dt,h] */ def bfct_via_gbfct_weight_1(F,V) { N = length(V); D = newvect(N); Wt = getopt(weight); if ( type(Wt) != 4 ) { for ( I = 0, Wt = []; I < N; I++ ) Wt = cons(1,Wt); } Tdeg = w_tdeg(F,V,Wt); WtV = newvect(2*(N+1)+1); /* wdeg(V[I])=Wt[I], wdeg(DV[I])=Tdeg-Wt[I]+1 */ for ( I = 0; I < N; I++ ) { WtV[I] = Wt[I]; WtV[N+1+I] = Tdeg-Wt[I]+1; } WtV[N] = Tdeg; WtV[2*N+1] = 1; WtV[2*(N+1)] = 1; dp_set_weight(WtV); for ( I = N-1, DV = []; I >= 0; I-- ) DV = cons(strtov("d"+rtostr(V[I])),DV); B = [TMP_T-F]; for ( I = 0; I < N; I++ ) { B = cons(DV[I]+diff(F,V[I])*TMP_DT,B); } V1 = append(V,[TMP_T]); DV1 = append(DV,[TMP_DT]); W = newvect(N+1); W[N] = 1; R = generic_bfct_1(B,V1,DV1,W); dp_set_weight(0); return subst(R,s,-s-1); } def bfct_via_gbfct_weight_2(F,V) { N = length(V); D = newvect(N); Wt = getopt(weight); if ( type(Wt) != 4 ) { for ( I = 0, Wt = []; I < N; I++ ) Wt = cons(1,Wt); } Tdeg = w_tdeg(F,V,Wt); /* a weight for the first GB computation */ /* [t,x1,...,xn,dt,dx1,...,dxn,h] */ WtV = newvect(2*(N+1)+1); WtV[0] = Tdeg; WtV[N+1] = 1; WtV[2*(N+1)] = 1; /* wdeg(V[I])=Wt[I], wdeg(DV[I])=Tdeg-Wt[I]+1 */ for ( I = 1; I <= N; I++ ) { WtV[I] = Wt[I-1]; WtV[N+1+I] = Tdeg-Wt[I-1]+1; } dp_set_weight(WtV); /* a weight for the second GB computation */ /* [x1,...,xn,t,dx1,...,dxn,dt,h] */ WtV2 = newvect(2*(N+1)+1); WtV2[N] = Tdeg; WtV2[2*N+1] = 1; WtV2[2*(N+1)] = 1; for ( I = 0; I < N; I++ ) { WtV2[I] = Wt[I]; WtV2[N+1+I] = Tdeg-Wt[I]+1; } for ( I = N-1, DV = []; I >= 0; I-- ) DV = cons(strtov("d"+rtostr(V[I])),DV); B = [TMP_T-F]; for ( I = 0; I < N; I++ ) { B = cons(DV[I]+diff(F,V[I])*TMP_DT,B); } V1 = cons(TMP_T,V); DV1 = cons(TMP_DT,DV); V2 = append(V,[TMP_T]); DV2 = append(DV,[TMP_DT]); W = newvect(N+1,[1]); dp_weyl_set_weight(W); VDV = append(V1,DV1); N1 = length(V1); N2 = N1*2; /* create a non-term order MW in D */ MW = newmat(N2+1,N2); for ( J = 0; J < N1; J++ ) { MW[0][J] = -W[J]; MW[0][N1+J] = W[J]; } for ( J = 0; J < N2; J++ ) MW[1][J] = 1; for ( I = 2; I <= N2; I++ ) MW[I][N2-I+1] = -1; /* homogenize F */ VDVH = append(VDV,[h]); FH = map(dp_dtop,map(dp_homo,map(dp_ptod,B,VDV)),VDVH); /* compute a groebner basis of FH w.r.t. MWH */ GH = dp_weyl_gr_main(FH,VDVH,0,1,11); /* dehomigenize GH */ G = map(subst,GH,h,1); /* G is a groebner basis w.r.t. a non term order MW */ /* take the initial part w.r.t. (-W,W) */ GIN = map(initial_part,G,VDV,MW,W); /* GIN is a groebner basis w.r.t. a term order M */ /* As -W+W=0, gr_(-W,W)(D) = D */ /* find b(W1*x1*d1+...+WN*xN*dN) in Id(GIN) */ for ( I = 0, T = 0; I < N1; I++ ) T += W[I]*V1[I]*DV1[I]; /* change of ordering from VDV to VDV2 */ VDV2 = append(V2,DV2); dp_set_weight(WtV2); for ( Pind = 0; ; Pind++ ) { Prime = lprime(Pind); GIN2 = dp_weyl_gr_main(GIN,VDV2,0,-Prime,0); if ( GIN2 ) break; } R = weyl_minipoly(GIN2,VDV2,0,T); /* M represents DRL order */ dp_set_weight(0); return subst(R,s,-s-1); } /* minimal polynomial of s; modular computation */ def weyl_minipolym(G,V,O,M,V0) { N = length(V); Len = length(G); dp_ord(O); setmod(M); PS = newvect(Len); PS0 = newvect(Len); for ( I = 0, T = G; T != []; T = cdr(T), I++ ) PS0[I] = dp_ptod(car(T),V); for ( I = 0, T = G; T != []; T = cdr(T), I++ ) PS[I] = dp_mod(dp_ptod(car(T),V),M,[]); for ( I = Len - 1, GI = []; I >= 0; I-- ) GI = cons(I,GI); U = dp_mod(dp_ptod(V0,V),M,[]); U = dp_weyl_nf_mod(GI,U,PS,1,M); T = dp_mod(<<0>>,M,[]); TT = dp_mod(dp_ptod(1,V),M,[]); G = H = [[TT,T]]; for ( I = 1; ; I++ ) { if ( dp_gr_print() ) print(".",2); T = dp_mod(<>,M,[]); TT = dp_weyl_nf_mod(GI,dp_weyl_mul_mod(TT,U,M),PS,1,M); H = cons([TT,T],H); L = dp_lnf_mod([TT,T],G,M); if ( !L[0] ) { if ( dp_gr_print() ) print(""); return dp_dtop(L[1],[t]); /* XXX */ } else G = insert(G,L); } } /* minimal polynomial of s over Q */ def weyl_minipoly(G0,V0,O0,P) { HM = hmlist(G0,V0,O0); N = length(V0); Len = length(G0); dp_ord(O0); PS = newvect(Len); for ( I = 0, T = G0, HL = []; T != []; T = cdr(T), I++ ) PS[I] = dp_ptod(car(T),V0); for ( I = Len - 1, GI = []; I >= 0; I-- ) GI = cons(I,GI); PSM = newvect(Len); DP = dp_ptod(P,V0); for ( Pind = 0; ; Pind++ ) { Prime = lprime(Pind); if ( !valid_modulus(HM,Prime) ) continue; setmod(Prime); for ( I = 0, T = G0, HL = []; T != []; T = cdr(T), I++ ) PSM[I] = dp_mod(dp_ptod(car(T),V0),Prime,[]); NFP = weyl_nf(GI,DP,1,PS); NFPM = dp_mod(NFP[0],Prime,[])/ptomp(NFP[1],Prime); NF = [[dp_ptod(1,V0),1]]; LCM = 1; TM = dp_mod(<<0>>,Prime,[]); TTM = dp_mod(dp_ptod(1,V0),Prime,[]); GM = NFM = [[TTM,TM]]; for ( D = 1; ; D++ ) { if ( dp_gr_print() ) print(".",2); NFPrev = car(NF); NFJ = weyl_nf(GI, dp_weyl_mul(NFP[0],NFPrev[0]),NFP[1]*NFPrev[1],PS); NFJ = remove_cont(NFJ); NF = cons(NFJ,NF); LCM = ilcm(LCM,NFJ[1]); /* modular computation */ TM = dp_mod(<>,Prime,[]); TTM = dp_mod(NFJ[0],Prime,[])/ptomp(NFJ[1],Prime); NFM = cons([TTM,TM],NFM); LM = dp_lnf_mod([TTM,TM],GM,Prime); if ( !LM[0] ) break; else GM = insert(GM,LM); } if ( dp_gr_print() ) print(""); U = NF[0][0]*idiv(LCM,NF[0][1]); Coef = []; for ( J = D-1; J >= 0; J-- ) { Coef = cons(strtov("u"+rtostr(J)),Coef); U += car(Coef)*NF[D-J][0]*idiv(LCM,NF[D-J][1]); } for ( UU = U, Eq = []; UU; UU = dp_rest(UU) ) Eq = cons(dp_hc(UU),Eq); M = etom([Eq,Coef]); B = henleq(M,Prime); if ( dp_gr_print() ) print(""); if ( B ) { R = 0; for ( I = 0; I < D; I++ ) R += B[0][I]*s^I; R += B[1]*s^D; return R; } } } def weyl_nf(B,G,M,PS) { for ( D = 0; G; ) { for ( U = 0, L = B; L != []; L = cdr(L) ) { if ( dp_redble(G,R=PS[car(L)]) > 0 ) { GCD = igcd(dp_hc(G),dp_hc(R)); CG = idiv(dp_hc(R),GCD); CR = idiv(dp_hc(G),GCD); U = CG*G-dp_weyl_mul(CR*dp_subd(G,R),R); if ( !U ) return [D,M]; D *= CG; M *= CG; break; } } if ( U ) G = U; else { D += dp_hm(G); G = dp_rest(G); } } return [D,M]; } def weyl_nf_mod(B,G,PS,Mod) { for ( D = 0; G; ) { for ( U = 0, L = B; L != []; L = cdr(L) ) { if ( dp_redble(G,R=PS[car(L)]) > 0 ) { CR = dp_hc(G)/dp_hc(R); U = G-dp_weyl_mul_mod(CR*dp_mod(dp_subd(G,R),Mod,[]),R,Mod); if ( !U ) return D; break; } } if ( U ) G = U; else { D += dp_hm(G); G = dp_rest(G); } } return D; } def remove_zero(L) { for ( R = []; L != []; L = cdr(L) ) if ( car(L) ) R = cons(car(L),R); return R; } def z_subst(F,V) { for ( ; V != []; V = cdr(V) ) F = subst(F,car(V),0); return F; } def flatmf(L) { for ( S = []; L != []; L = cdr(L) ) if ( type(F=car(car(L))) != NUM ) S = append(S,[F]); return S; } def intersection(A,B) { for ( L = []; A != []; A = cdr(A) ) if ( member(car(A),B) ) L = cons(car(A),L); return L; } def b_subst(F,V) { D = deg(F,V); C = newvect(D+1); for ( I = D; I >= 0; I-- ) C[I] = coef(F,I,V); for ( I = 0, R = 0; I <= D; I++ ) if ( C[I] ) R += C[I]*v_factorial(V,I); return R; } def v_factorial(V,N) { for ( J = N-1, R = 1; J >= 0; J-- ) R *= V-J; return R; } def w_tdeg(F,V,W) { dp_set_weight(newvect(length(W),W)); T = dp_ptod(F,V); for ( R = 0; T; T = cdr(T) ) { D = dp_td(T); if ( D > R ) R = D; } return R; } def replace_vars_f(F) { return subst(F,s,TMP_S,t,TMP_T,y1,TMP_Y1,y2,TMP_Y2); } def replace_vars_v(V) { V = replace_var(V,s,TMP_S); V = replace_var(V,t,TMP_T); V = replace_var(V,y1,TMP_Y1); V = replace_var(V,y2,TMP_Y2); return V; } def replace_var(V,X,Y) { V = reverse(V); for ( R = []; V != []; V = cdr(V) ) { Z = car(V); if ( Z == X ) R = cons(Y,R); else R = cons(Z,R); } return R; } end$