/* * Copyright (c) 1994-2000 FUJITSU LABORATORIES LIMITED * All rights reserved. * * FUJITSU LABORATORIES LIMITED ("FLL") hereby grants you a limited, * non-exclusive and royalty-free license to use, copy, modify and * redistribute, solely for non-commercial and non-profit purposes, the * computer program, "Risa/Asir" ("SOFTWARE"), subject to the terms and * conditions of this Agreement. For the avoidance of doubt, you acquire * only a limited right to use the SOFTWARE hereunder, and FLL or any * third party developer retains all rights, including but not limited to * copyrights, in and to the SOFTWARE. * * (1) FLL does not grant you a license in any way for commercial * purposes. You may use the SOFTWARE only for non-commercial and * non-profit purposes only, such as academic, research and internal * business use. * (2) The SOFTWARE is protected by the Copyright Law of Japan and * international copyright treaties. If you make copies of the SOFTWARE, * with or without modification, as permitted hereunder, you shall affix * to all such copies of the SOFTWARE the above copyright notice. * (3) An explicit reference to this SOFTWARE and its copyright owner * shall be made on your publication or presentation in any form of the * results obtained by use of the SOFTWARE. * (4) In the event that you modify the SOFTWARE, you shall notify FLL by * e-mail at risa-admin@sec.flab.fujitsu.co.jp of the detailed specification * for such modification or the source code of the modified part of the * SOFTWARE. * * THE SOFTWARE IS PROVIDED AS IS WITHOUT ANY WARRANTY OF ANY KIND. FLL * MAKES ABSOLUTELY NO WARRANTIES, EXPRESSED, IMPLIED OR STATUTORY, AND * EXPRESSLY DISCLAIMS ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS * FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF THIRD PARTIES' * RIGHTS. NO FLL DEALER, AGENT, EMPLOYEES IS AUTHORIZED TO MAKE ANY * MODIFICATIONS, EXTENSIONS, OR ADDITIONS TO THIS WARRANTY. * UNDER NO CIRCUMSTANCES AND UNDER NO LEGAL THEORY, TORT, CONTRACT, * OR OTHERWISE, SHALL FLL BE LIABLE TO YOU OR ANY OTHER PERSON FOR ANY * DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE OR CONSEQUENTIAL * DAMAGES OF ANY CHARACTER, INCLUDING, WITHOUT LIMITATION, DAMAGES * ARISING OUT OF OR RELATING TO THE SOFTWARE OR THIS AGREEMENT, DAMAGES * FOR LOSS OF GOODWILL, WORK STOPPAGE, OR LOSS OF DATA, OR FOR ANY * DAMAGES, EVEN IF FLL SHALL HAVE BEEN INFORMED OF THE POSSIBILITY OF * SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY. EVEN IF A PART * OF THE SOFTWARE HAS BEEN DEVELOPED BY A THIRD PARTY, THE THIRD PARTY * DEVELOPER SHALL HAVE NO LIABILITY IN CONNECTION WITH THE USE, * PERFORMANCE OR NON-PERFORMANCE OF THE SOFTWARE. * * $OpenXM: OpenXM_contrib2/asir2018/lib/dmul,v 1.1 2018/09/19 05:45:08 noro Exp $ */ #define MAX(a,b) ((a)>(b)?(a):(b)) #define MIN(a,b) ((a)>(b)?(b):(a)) /* CAUTION: functions in this file are experimental. */ /* return: F1*F2 if option 'proc' is supplied as a list of server id's, F1*F2 is calculated by distributed computation. */ def d_mul(F1,F2) { Procs = getopt(proc); if ( type(Procs) == -1 ) Procs = []; Mod = getopt(mod); if ( type(Mod) == -1 ) Mod = 0; NP = length(Procs)+1; V =var(F1); if ( !V ) { T = F1*F2; if ( Mod ) return T % Mod; else return T; } D1 = deg(F1,V); D2 = deg(F2,V); Dmin = MIN(D1,D2); Dfft = p_mag(D1+D2+1)+1; Bound = maxblen(F1)+maxblen(F2)+p_mag(Dmin)+1; if ( Bound < 32 ) Bound = 32; Marray = newvect(NP); MIarray = newvect(NP); for ( I = 0; I < NP; I++ ) { Marray[I] = 1; MIarray[I] = []; } for ( M = 1, I = 0, J = 0; p_mag(M) <= Bound; J = (J+1)%NP ) { T = get_next_fft_prime(I,Dfft); if ( !T ) error("fft_mul_d : fft_prime exhausted."); Marray[J] *= T[1]; MIarray[J] = cons(T[0],MIarray[J]); M *= T[1]; I = T[0]+1; } /* Now, Marray[J] = FFTprime[Marray[J][0]]*...*FFTprime[Marray[J][...]] M = Marray[0]*...*Marray[NP-1] */ C = newvect(NP); T0 = time(); for ( J = 0; J < NP-1; J++ ) ox_cmo_rpc(Procs[J],"call_umul",F1,F2,MIarray[J],Marray[J],M); T1 = time(); R = call_umul(F1,F2,MIarray[NP-1],Marray[NP-1],M); T2 = time(); for ( J = 0; J < NP-1; J++ ) R += ox_pop_cmo(Procs[J]); T3 = time(); /* print(["send",T1[3]-T0[3],"self",T2[3]-T1[3],"recv",T3[3]-T2[3]]); */ if ( Mod ) return (R%M)%Mod; else return uadj_coef(R%M,M,ishift(M,1)); } /* return: F1^2 if option 'proc' is supplied as a list of server id's, F1^2 is calculated by distributed computation. */ def d_square(F1) { Procs = getopt(proc); if ( type(Procs) == -1 ) Procs = []; Mod = getopt(mod); if ( type(Mod) == -1 ) Mod = 0; NP = length(Procs)+1; V =var(F1); if ( !V ) { T = F1^2; if ( Mod ) return T % Mod; else return T; } D1 = deg(F1,V); Dfft = p_mag(2*D1+1)+1; Bound = 2*maxblen(F1)+p_mag(D1)+1; if ( Bound < 32 ) Bound = 32; Marray = newvect(NP); MIarray = newvect(NP); for ( I = 0; I < NP; I++ ) { Marray[I] = 1; MIarray[I] = []; } for ( M = 1, I = 0, J = 0; p_mag(M) <= Bound; J = (J+1)%NP ) { T = get_next_fft_prime(I,Dfft); if ( !T ) error("fft_mul_d : fft_prime exhausted."); Marray[J] *= T[1]; MIarray[J] = cons(T[0],MIarray[J]); M *= T[1]; I = T[0]+1; } /* Now, Marray[J] = FFTprime[Marray[J][0]]*...*FFTprime[Marray[J][...]] M = Marray[0]*...*Marray[NP-1] */ C = newvect(NP); T0 = time(); for ( J = 0; J < NP-1; J++ ) ox_cmo_rpc(Procs[J],"call_usquare",F1,MIarray[J],Marray[J],M); T1 = time(); R = call_usquare(F1,MIarray[NP-1],Marray[NP-1],M); T2 = time(); for ( J = 0; J < NP-1; J++ ) R += ox_pop_cmo(Procs[J]); T3 = time(); /* print(["send",T1[3]-T0[3],"self",T2[3]-T1[3],"recv",T3[3]-T2[3]]); */ if ( Mod ) return (R%M)%Mod; else return uadj_coef(R%M,M,ishift(M,1)); } /* return: F1^2 mod V^(D+1) if option 'proc' is supplied as a list of server id's, F1*F2 mod V^(D+1) is calculated by distributed computation. */ def d_tmul(F1,F2,D) { Procs = getopt(proc); if ( type(Procs) == -1 ) Procs = []; Mod = getopt(mod); if ( type(Mod) == -1 ) Mod = 0; NP = length(Procs)+1; V =var(F1); if ( !V ) { T = utrunc(F1*F2,D); if ( Mod ) return T % Mod; else return T; } D1 = deg(F1,V); D2 = deg(F2,V); Dmin = MIN(D1,D2); Dfft = p_mag(D1+D2+1)+1; Bound = maxblen(F1)+maxblen(F2)+p_mag(Dmin)+1; if ( Bound < 32 ) Bound = 32; Marray = newvect(NP); MIarray = newvect(NP); for ( I = 0; I < NP; I++ ) { Marray[I] = 1; MIarray[I] = []; } for ( M = 1, I = 0, J = 0; p_mag(M) <= Bound; J = (J+1)%NP ) { T = get_next_fft_prime(I,Dfft); if ( !T ) error("fft_mul_d : fft_prime exhausted."); Marray[J] *= T[1]; MIarray[J] = cons(T[0],MIarray[J]); M *= T[1]; I = T[0]+1; } /* Now, Marray[J] = FFTprime[Marray[J][0]]*...*FFTprime[Marray[J][...]] M = Marray[0]*...*Marray[NP-1] */ C = newvect(NP); T0 = time(); for ( J = 0; J < NP-1; J++ ) ox_cmo_rpc(Procs[J],"call_utmul",F1,F2,D,MIarray[J],Marray[J],M); T1 = time(); R = call_utmul(F1,F2,D,MIarray[NP-1],Marray[NP-1],M); T2 = time(); for ( J = 0; J < NP-1; J++ ) R += ox_pop_cmo(Procs[J]); T3 = time(); /* print(["send",T1[3]-T0[3],"self",T2[3]-T1[3],"recv",T3[3]-T2[3]]); */ if ( Mod ) return (R%M)%Mod; else return uadj_coef(R%M,M,ishift(M,1)); } def d_rembymul(F1,F2,INVF2) { Procs = getopt(proc); if ( type(Procs) == -1 ) Procs = []; Mod = getopt(mod); if ( type(Mod) == -1 ) Mod = 0; NP = length(Procs)+1; if ( !F2 ) error("d_rembymul : division by 0"); V =var(F1); if ( !V ) { T = srem(F1,F2); if ( Mod ) return T % Mod; else return T; } D1 = deg(F1,V); D2 = deg(F2,V); if ( !F1 || !D2 ) return 0; if ( D1 < D2 ) return F1; D = D1-D2; R1 = utrunc(ureverse(F1),D); Q = ureverse(utrunc(d_tmul(R1,INVF2,D|proc=Procs,mod=Mod),D)); if ( Mod ) return (utrunc(F1,D2-1)-d_tmul(Q,F2,D2-1|proc=Procs,mod=Mod))%Mod; else return utrunc(F1,D2-1)-d_tmul(Q,F2,D2-1|proc=Procs); } def call_umul(F1,F2,Ind,M1,M) { C = umul_specialmod(F1,F2,Ind); Mhat = idiv(M,M1); MhatInv = inv(Mhat,M1); return Mhat*((MhatInv*C)%M1); } def call_usquare(F1,Ind,M1,M) { C = usquare_specialmod(F1,Ind); Mhat = idiv(M,M1); MhatInv = inv(Mhat,M1); return Mhat*((MhatInv*C)%M1); } def call_utmul(F1,F2,D,Ind,M1,M) { C = utmul_specialmod(F1,F2,D,Ind); Mhat = idiv(M,M1); MhatInv = inv(Mhat,M1); return Mhat*((MhatInv*C)%M1); } end$